The development of new technologies, the use and transport of LNG increases the number of investments that may mutually affect their safety on account of a domino effect. It means that a breakdown caused by one of the business entities may contribute to the escalation of a problem through thermal energy emission in another entity. The energy absorbed in an adjacent technological process line may cause irreparable damage despite the security measures employed. When planning an investment of a pioneering nature, one ought to consider not only the modern technologies used in a newly designed installation, but one must also pay attention to the direct neighbourhood of other industrial plants and the planned infrastructure, e.g. for gas transport or transhipment. Such a synergistic approach guarantees the safety of undertaken activities and ensures a stable, breakdown-free operation of all the business entities located in a given area. This paper discusses the issue of mutual influence exerted by two independent entities located within a small distance of one another, i.e. salt processing plant and a vessel transporting an LNG mixture. The authors considered a situation in which a breakdown occurs in an industrial plant and in which the released energy causes damage to a tank shell of an LNG carrying vessel on an inland fairway. In the examined situation the types of risks arising from LNG tank shell damage on-board an inland vessel were defined and the dimensions of the resulting danger zones were determined in a function of concentration of individual LNG components as well as the pressure and temperature generated inside the tank. The shape of the tank was also taken into consideration, since it affects fractioning in the course of the release of the substance accumulated in it. The analysis was conducted on the basis of DNV Phast 7.11 software.
This article concerns the assessment of the level of risk at the stage of construction of a seaport, with particular emphasis on selected adverse incidents that can significantly affect the timeliness of the investment. In this article, the matrix method was used to analyse and evaluate the level of risk, and statistical analysis and case studies were used to identify incidents occurring during the port construction project. This allowed the identification of incidents with the highest probability of occurrence during the port construction process and to determine their impact on environmental pollution and the timeliness and success of the investment. The risk analysis performed identified 15 typical incidents of technical nature. The determined risk level for these incidents is at a moderate level or lower, which can be considered acceptable. For all undesirable incidents the values of probability and loss levels have been averaged, because e.g., a fire can have an extremely different dimension and can cause a different scale of losses. Analysis presented in the paper indicate the need to develop procedures for proceeding during the implementation of significant technical tasks to minimize the level of risk of adverse incidents and their consequences.
Abstract:Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application -significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.
The analysis of danger zone ranges for LNG in the coastal area is an important task on account of, inter alia, the safety of human life. It is not an easy process, which is why we consider an danger situation for various weather conditions in the function of constant wind speeds and for various wind speeds in constant weather stability. Pasquill weather stability scale and Beaufort scale with regard to terrain roughness were adopted for the analysis. Both scenarios were considered in the example of Q-flex type vessels in the Świnoujście terminal for two methods of LNG release, i.e. related to a sudden explosion and slow release caused by a leak. The analysis was conducted and considered for the values in the top and bottom flammability limit. Modelling of the danger zone range was analysed with DNV PHAST software, version 7.11. In the process of comparison of the situation related to the risk of explosion in the function of various weather stabilities according to Pasquill scale and constant wind speeds, the values of 1.5 m/s and 5 m/s were adopted, corresponding to 1 and 3 wind force on the Beaufort scale. Those speeds correspond to the water conditions featuring tiny ripples and small waves, the crests of which start to break. The adopted weather stabilities analysed for wind speed equal to 1.5 m/s are A, B, D. A-type stability signifies the least stable atmospheric conditions, and D-type means neutral conditions. In turn, for the wind speed of 5 m/s B, D and F parameters in Pasquill scale were selected. Furthermore, ranges for variable wind speed values were analysed for the selected Pasquill stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.