The rapid developments in the field of digital aerial photogrammetry (DAP) in recent years have increased interest in the application of DAP data for extracting three-dimensional (3D) models of forest canopies. This technology, however, still requires further investigation to confirm its reliability in estimating forest attributes in complex forest conditions. The main purpose of this study was to evaluate the accuracy of tree height estimation based on a crown height model (CHM) generated from the difference between a DAP-derived digital surface model (DSM) and an airborne laser scanning (ALS)-derived digital terrain model (DTM). The tree heights determined based on the DAP-CHM were compared with ground-based measurements and heights obtained using ALS data only (ALS-CHM). Moreover, tree- and stand-related factors were examined to evaluate the potential influence on the obtained discrepancies between ALS- and DAP-derived heights. The obtained results indicate that the differences between the means of field-measured heights and DAP-derived heights were statistically significant. The root mean square error (RMSE) calculated in the comparison of field heights and DAP-derived heights was 1.68 m (7.34%). The results obtained for the CHM generated using only ALS data produced slightly lower errors, with RMSE = 1.25 m (5.46%) on average. Both ALS and DAP displayed the tendency to underestimate tree heights compared to those measured in the field; however, DAP produced a higher bias (1.26 m) than ALS (0.88 m). Nevertheless, DAP heights were highly correlated with the heights measured in the field (R2 = 0.95) and ALS-derived heights (R2 = 0.97). Tree species and height difference (the difference between the reference tree height and mean tree height in a sample plot) had the greatest influence on the differences between ALS- and DAP-derived heights. Our study confirms that a CHM computed based on the difference between a DAP-derived DSM and an ALS-derived DTM can be successfully used to measure the height of trees in the upper canopy layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.