Atypical community-acquired pneumonia (CAP) is a lung infection caused by atypical bacteria. It is associated with nonspecific symptoms, the course of the disease is unusual and it poses a serious threat to patients. Even though CAP is quite prevalent, most cases remain undiagnosed, and clinicians rely solely on empirical therapy. The aim of this article is to characterize the most frequently used methods in diagnostics of atypical CAPs and evaluate their efficacy. A literature review showed that most of these techniques are still under development and there is a need for standardized diagnostic algorithms for atypical infections. Molecular panels and serological assays have been especially emphasized as they allow for rapid identification of etiologic agents and antibiotic resistance. StreszczenieAtypowe zapalenie płuc (AZP) to infekcja spowodowana przez bakterie atypowe. Charakteryzuje się nietypowym przebiegiem, mało specyficznymi objawami, a jej powikłania mogą nieść duże ryzyko dla pacjentów. Mimo że prewalencja tej choroby jest wysoka, duża część przypadków nie zostaje prawidłowo zdiagnozowana i klinicyści opierają się jedynie na terapii empirycznej. W artykule przedstawiono metody powszechnie stosowane w diagnostyce AZP wraz z krótką charakterystyką i porównanie ich skuteczności. Przegląd literatury wykazał, że większość technik wciąż jest w fazie rozwoju i nie posiadamy wystandaryzowanych algorytmów postępowania w przypadku atypowych infekcji. Szczególny nacisk został położony na panele molekularne i serologiczne, które pozwalają na szybką, skuteczną identyfikację czynnika etiologicznego oraz ocenę lekooporności.
The permanent anti-mold protection of textile surfaces, particularly those utilized in the manufacture of outdoor sporting goods, is still an issue that requires cutting-edge solutions. This study attempts to obtain antifungal nanocoatings on four selected fabrics used in the production of high-mountain clothing and sleeping bags, and on PET foil as a model substrate, employing the cold plasma technique for this purpose. Three plasma treatment procedures were used to obtain such nanocoatings: plasma-activated graft copolymerization of a biocidal precursor, deposition of a thin-film matrix by plasma-activated graft copolymerization and anchoring biocidal molecules therein, and plasma polymerization of a biocidal precursor. The precursors used represented three important groups of antifungal agents: phenols, amines, and anchored compounds. SEM microscopy and FTIR-ATR spectrometry were used to characterize the produced nanocoatings. For testing antifungal properties, four species of common mold fungi were selected: A. niger, A. fumigatus, A. tenuissima, and P. chrysogenum. It was found that the relatively best nanocoating, both in terms of plasma process performance, durability, and anti-mold activity, is plasma polymerized 2-allylphenol. The obtained results confirm our belief that cold plasma technology is a great tool for modifying the surface of textiles to provide them with antifungal properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.