The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes.
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.
Rhizobia are soil bacteria able to develop a nitrogen-fixing symbiosis with legumes. They are taxonomically spread among the alpha and beta subclasses of the Proteobacteria. Mimosa pudica, a tropical invasive weed, has been found to have an affinity for beta-rhizobia, including species within the Burkholderia and Cupriavidus genera. In this study, we describe the diversity of M. pudica symbionts in the island of New Caledonia, which is characterized by soils with high heavy metal content, especially of Ni. By using a plant-trapping approach on four soils, we isolated 96 strains, the great majority of which belonged to the species Cupriavidus taiwanensis (16S rRNA and recA gene phylogenies). A few Rhizobium strains in the newly described species Rhizobium mesoamericanum were also isolated. The housekeeping and nod gene phylogenies supported the hypothesis of the arrival of the C. taiwanensis and R. mesoamericanum strains together with their host at the time of the introduction of M. pudica in New Caledonia (NC) for its use as a fodder. The C. taiwanensis strains exhibited various tolerances to Ni, Zn and Cr, suggesting their adaptation to the specific environments in NC. Specific metal tolerance marker genes were found in the genomes of these symbionts, and their origin was investigated by phylogenetic analyses.
Summary• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N 2 -fixation of the bacterial partner were investigated.• Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status.• The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N 2 -fixing partners to compensate the local N limitation. This response is mediated by a stimulation of nodule development (number and size) and involves a systemic signaling mechanism related to the plant N demand. In roots co-infected with poorly and highly efficient strains, partner choice for nodule formation was not modulated by the plant N status. However, the plant N demand induced preferential expansion of nodules formed with the most efficient partners when the symbiotic organs were functional. The response of nodule expansion was associated with the stimulation of symbiotic plant cell multiplication and of bacteroid differentiation.• A general model where local and systemic N signaling mechanisms modulate interactions between Medicago truncatula and its Sinorhizobium partners is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.