There is a great interest in searching for diagnostic biomarkers in prostate cancer patients. The aim of the pilot study was to evaluate free amino acid profiles in their serum and urine. The presented paper shows the first comprehensive analysis of a wide panel of amino acids in two different physiological fluids obtained from the same groups of prostate cancer patients (n = 49) and healthy men (n = 40). The potential of free amino acids, both proteinogenic and non-proteinogenic, as prostate cancer biomarkers and their utility in classification of study participants have been assessed. Several metabolites, which deserve special attention in the further metabolomic investigations on searching for prostate cancer markers, were indicated. Moreover, free amino acid profiles enabled to classify samples to one of the studied groups with high sensitivity and specificity. The presented research provides a strong evidence that ethanolamine, arginine and branched-chain amino acids metabolic pathways can be a valuable source of markers for prostate cancer. The altered concentrations of the above-mentioned metabolites suggest their role in pathogenesis of prostate cancer and they should be further evaluated as clinically useful markers of prostate cancer.
The use of illicit drugs causes unquestionable societal and economic damage. To implement actions aimed at combating drug abuse, it is necessary to assess illicit drug consumption patterns. The purpose of this paper was to develop, optimize, validate and apply a procedure for determining new psychoactive substances (NPSs) and classic drugs of abuse and their main metabolites in wastewater samples by using solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Moreover, detailed validation of the procedure was conducted. The developed SPE-HPLC-MS/MS procedure (within the sewage-based epidemiology strategy) allowed for the simultaneous, selective, very sensitive, accurate (recoveries ≥ 80.1%) and precise (CV ≤ 8.1%) determination of new and classic psychoactive substances in wastewater samples. This study is characterized by new scientific elements, especially in terms of the freeze-thaw and post-preparative stability of the selected psychoactive substances. This is the first time that NPSs (mephedrone and ketamine), the main metabolites of heroin (6-acetylmorphine, 6-AM) and marijuana (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, THC-COOH) have been detected and monitored in Poland. This study is also the first to corroborate the data available from the EMCDDA and EUROPOL report and indicates that the retail market for cocaine is expanding in Eastern Europe. Drug abuse and illicit drug trafficking is a global phenomenon that causes a broad spectrum of social, health and economic problems 1-4. The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and the United Nations Office On Drugs and Crime (UNODC) reported that drug-related problems are becoming increasingly complex, especially with regard to the extremely dynamic nature of the new psychoactive substances market, stimulants, misused medicines and problematic cannabis use 3-7. Moreover, the verification of the presence of traditional illegal drugs (i.e., amphetamine, methamphetamine, ecstasy, etc.) in sewage samples is still needed because of environmental and forensic issues 8,9. The environmental impact of synthetic drug production has been highlighted in the last EMCDDA and EUROPOL report 7. Waste from drug production discharged into surface waters may harm aquatic life, can potentially contaminate the meat of cattle, which can affect the human food chain, and could further spread hazardous substances into the soil and waterways 7,10. In this context, it is crucial to pay greater attention to developing new methodologies as tools for monitoring illicit drug consumption and its trends and drug trafficking to combat drug abuse and improve quality of life 11-17. Illegal drug use is mostly an unofficial activity. Consequently, traditional survey methods, such as general population interviews and surveys, can be inaccurate and may also produce results based on conjectures 2,8,18,19. Conventional survey methods are not suitable for monitoring fast-changing drug markets over time 20. T...
The aim of this study was to quantitate 42 serum-free amino acids, propose the biochemical explanation of their role in tumor development, and identify new ovarian cancer (OC) biomarkers for potential use in OC screening. The additional value of this work is the schematic presentation of the interrelationship between metabolites which were identified as significant for OC development and progression. The liquid chromatography-tandem mass spectrometry technique using highly-selective multiple reaction monitoring mode and labeled internal standards for each analyzed compound was applied. Performed statistical analyses showed that amino acids are potentially useful as OC biomarkers, especially as variables in multi-marker models. For the distinguishing metabolites the following metabolic pathways involved in cancer growth and development were proposed: histidine metabolism; tryptophan metabolism; arginine biosynthesis; arginine and proline metabolism; and alanine, aspartate and glutamine metabolism. The presented research identifies histidine and citrulline as potential new OC biomarkers. Furthermore, it provides evidence that amino acids are involved in metabolic pathways related to tumor growth and play an important role in cancerogenesis.
PurposeThe aim of the project was to apply ultra-high-performance liquid chromatography–quadrupole-Orbitrap-high-resolution mass spectrometry for serum metabolite profiling of non-small-cell lung cancer (NSCLC). This Orbitrap-based methodology has been applied for a study of NSCLC potential markers for the first time.MethodsAfter extraction using protein precipitation, sera were separated on the ACE Excel 2 C18-PFP (100 × 2.1 mm, 2.0 µm) column using gradient elution and analyzed within the range of 70–1000 m/z. Only patients with early stage disease (stages IA–IIB) were included in the study, providing opportunity to find biomarkers for early lung cancer detection. The resulting metabolite profiles were subjected to univariate and multivariate statistical tests.Results36 features were found significantly changed between NSCLC group and controls after FDR adjustment and 19 were identified using various metabolite databases (in-house library, HMDB, mzCloud). The study revealed a number of NSCLC biomarker candidates which belong to such compound classes as acylcarnitines, organic acids, and amino acids. Multivariate ROC curve built using 12 identified metabolites was characterized by AUC = 0.836 (0.722–0.946). There were no significant differences in the serum metabolite profiles between two most common histological types of lung cancer—adenocarcinoma and squamous cell carcinoma.ConclusionsThrough identification of novel potential tumor markers, Orbitrap-based global metabolic profiling is a useful strategy in cancer research. Our study can accelerate development of new diagnostic and therapeutic strategies in NSCLC. The metabolites involved in discrimination between NSCLC patients and the control subjects should be further explored using a targeted approach.Electronic supplementary materialThe online version of this article (doi:10.1007/s00432-017-2347-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.