The focus of the development of UV-crosslinkable self-adhesive medical products is on one hand directed toward customer-oriented requirements such as tack, adhesion, cohesion, biocompatibility, and permeability for water vapor or air. The customer wants highly tolerable, breathable products, which are also characterized by very good skin and optimal release. On the other hand, the economic targets of medical products manufactures must be considered. Development in the area of UV-crosslinkable acrylic pressure-sensitive adhesives (PSA) for medical application describes the variety of acrylic composition, residue monomers content, quality control of peel adhesion level and repeating during the time, biocompatibility of the acrylic self-adhesive layers and their practical medical application. The new class of unsaturable copolymerizable photoinitiator, such as 4-acryloyloxy benzophenone was used for the synthesis of photoreactive UV-crosslinkable solvent-borne acrylic PSA. The properties of acrylic PSA were determined as well.
A new fabrication method for thin (120 µm) thermally curable structural self-adhesive tapes (SATs) was demonstrated by utilizing a series of acrylic syrups (ASs) modified using Bisphenol A-based liquid epoxy resin. The acrylic syrups containing poly(butyl acrylate-co-butyl methacrylate-co-glycidyl methacrylate-co-2-hydroxyetyl acrylate-co-4-acryloyloxy benzophenone) were synthesized via free-radical bulk-photopolymerization (FRBP) process. Influence of different type I radical photoinitiators (PIs), i.e., α-hydroxyalkylphenones (HPs), acylphosphine oxides (APOs) and its mixtures (HPs/APOs and APO/APO) on selected physico-chemical features of obtained ASs was studied. It turned out that APO-type PIs are more effective in the FRBP process (NMR studies). Self-adhesive tests of SATs revealed that the monomers’ conversion in ASs have a significant influence on adhesion and tack. Moreover, the polymer structures formed at the UV cross-linking stage of SATs significantly affect the cross-linking degree of SATs during thermal curing (differential scanning calorimetry method). The highest values of overlap shear strength were achieved by SATs based on ASs with monomers’ conversion on the level 50–60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.