BackgroundThe aim of this study is to present results of the implantation of autologous myoblasts into the external anal sphincter (EAS) in ten patients with fecal incontinence.MethodsAfter anatomical and functional assessment of the patients’ EAS, a vastus lateralis muscle open biopsy was performed. Stem cells were extracted from the biopsy specimens and cultured in vitro. Cell suspensions were then administered to the EAS. Patients were scheduled for follow-up visits in 6-week intervals. Total follow-up was 12 months.ResultsAll biopsy and cell implantation procedures were performed without complications. Nine of the patients completed a full 12-month follow-up. There was subjective improvement in six patients (66.7 %). In manometric examinations 18 weeks after implantation, squeeze anal pressures and high-pressure zone length increased in all patients, with particularly significant sphincter function recovery in five patients (55.6 %). Electromyographic (EMG) examination showed an increase in signal amplitude in all patients, detecting elevated numbers of propagating action potentials. Twelve months after implantation two patients experienced deterioration of continence, which was also reflected in the deterioration of manometric and EMG parameters. The remaining four patients (44.4 %) still described their continence as better than before implantation and retained satisfactory functional examination parameters.ConclusionsImplantation of autologous myoblasts gives good short-term results not only in a subjective assessment, but also in objective functional tests. It seems that this promising technology can improve the quality of life of patients with fecal incontinence, but further study is required to achieve better and more persistent results.
Ischemic heart disease, also known as coronary artery disease (CAD), poses a challenge
for regenerative medicine. iPSC technology might lead to a breakthrough due to the
possibility of directed cell differentiation delivering a new powerful source of human
autologous cardiomyocytes. One of the factors supporting proper cell maturation is in
vitro culture duration. In this study, primary human skeletal muscle myoblasts were
selected as a myogenic cell type reservoir for genetic iPSC reprogramming. Skeletal muscle
myoblasts have similar ontogeny embryogenetic pathways (myoblasts vs. cardiomyocytes), and
thus, a greater chance of myocardial development might be expected, with maintenance of
acquired myogenic cardiac cell characteristics, from the differentiation process when
iPSCs of myoblastoid origin are obtained. Analyses of cell morphological and structural
changes, gene expression (cardiac markers), and functional tests (intracellular calcium
transients) performed at two in vitro culture time points spanning the early stages of
cardiac development (day 20 versus 40 of cell in vitro culture) confirmed the ability of
the obtained myogenic cells to acquire adult features of differentiated cardiomyocytes.
Prolonged 40-day iPSC-derived cardiomyocytes (iPSC-CMs) revealed progressive cellular
hypertrophy; a better-developed contractile apparatus; expression of marker genes similar
to human myocardial ventricular cells, including a statistically significant
CX43 increase, an MHC isoform switch, and a troponin I isoform
transition; more efficient intercellular calcium handling; and a stronger response to
β-adrenergic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.