Guanylate-binding proteins (GBPs) have recently emerged as central orchestrators of immunity to infection, inflammation, and neoplastic diseases. Within numerous host cell types, these IFN-induced GTPases assemble into large nanomachines that execute distinct host defense activities against a wide variety of microbial pathogens. In addition, GBPs customize inflammasome responses to bacterial infection and sepsis, where they act as critical rheostats to amplify innate immunity and regulate tissue damage. Similar functions are becoming evident for metabolic inflammatory syndromes and cancer, further underscoring the importance of GBPs within infectious as well as altered homeostatic settings. A better understanding of the basic biology of these IFN-induced GTPases could thus benefit clinical approaches to a wide spectrum of important human diseases.
Because signaling mediated by the transcription factor nuclear factor κB (NF-κB) is initiated by ligands and receptors that can undergo internalization, we investigated how endocytic trafficking regulated this key physiological pathway. We depleted all of the ESCRT (endosomal sorting complexes required for transport) subunits, which mediate receptor trafficking and degradation, and found that the components Tsg101, Vps28, UBAP1, and CHMP4B were essential to restrict constitutive NF-κB signaling in human embryonic kidney 293 cells. In the absence of exogenous cytokines, depletion of these proteins led to the activation of both canonical and noncanonical NF-κB signaling, as well as the induction of NF-κB-dependent transcriptional responses in cultured human cells, zebrafish embryos, and fat bodies in flies. These effects depended on cytokine receptors, such as the lymphotoxin β receptor (LTβR) and tumor necrosis factor receptor 1 (TNFR1). Upon depletion of ESCRT subunits, both receptors became concentrated on and signaled from endosomes. Endosomal accumulation of LTβR induced its ligand-independent oligomerization and signaling through the adaptors TNFR-associated factor 2 (TRAF2) and TRAF3. These data suggest that ESCRTs constitutively control the distribution of cytokine receptors in their ligand-free state to restrict their signaling, which may represent a general mechanism to prevent spurious activation of NF-κB.
Signaling of plasma membrane receptors can be regulated by endocytosis at different levels, including receptor internalization, endocytic sorting towards degradation or recycling, and using endosomes as mobile signaling platforms. Increasing number of reports underscore the importance of endocytic mechanisms for signaling of cytokine receptors. In this short review we present both consistent and conflicting data regarding endocytosis and its role in signaling of receptors from the tumor necrosis factor receptor superfamily (TNFRSF) and those for interleukins (ILRs) and interferons (IFNRs). These receptors can be internalized through various endocytic routes and most of them are able to activate downstream pathways from endosomal compartments. Moreover, some of the cytokine receptors clearly require endocytosis for proper signal transduction. Still, the data describing internalization mechanisms and fate of cytokine receptors are often fragmentary and barely address the relation between their endocytosis and signaling. In the light of growing knowledge regarding different mechanisms of endocytosis, extending it to the regulation of cytokine receptor signaling may improve our understanding of the complex and pleiotropic functions of these molecules.
Activation of cell-autonomous defense by the immune cytokine interferon-γ (IFN-γ) is critical to the control of life-threatening infections in humans. IFN-γ induces the expression of hundreds of host proteins in all nucleated cells and tissues, yet many of these proteins remain uncharacterized. We screened 19,050 human genes by CRISPR-Cas9 mutagenesis and identified IFN-γ–induced apolipoprotein L3 (APOL3) as a potent bactericidal agent protecting multiple non–immune barrier cell types against infection. Canonical apolipoproteins typically solubilize mammalian lipids for extracellular transport; APOL3 instead targeted cytosol-invasive bacteria to dissolve their anionic membranes into human-bacterial lipoprotein nanodiscs detected by native mass spectrometry and visualized by single-particle cryo–electron microscopy. Thus, humans have harnessed the detergent-like properties of extracellular apolipoproteins to fashion an intracellular lysin, thereby endowing resident nonimmune cells with a mechanism to achieve sterilizing immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.