BackgroundWe present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics such as demethylation, de novo methylation, and preservation of methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied the technique to analyze aluminum (Al)-tolerant and non-tolerant control and Al-stressed inbred triticale lines. The approach is based on detailed analysis of events affecting HpaII and MspI restriction sites in control and stressed samples, and takes advantage of molecular marker profiles generated by EcoRI/HpaII and EcoRI/MspI MSAP platforms.MethodsFive Al-tolerant and five non-tolerant triticale lines were exposed to aluminum stress using the physiologicaltest. Total genomic DNA was isolated from root tips of all tolerant and non-tolerant lines before and after Al stress following metAFLP and MSAP approaches. Based on codes reflecting events affecting cytosines within a given restriction site recognized by HpaII and MspI in control and stressed samples demethylation (DM), de novo methylation (DNM), preservation of methylated sites (MSP), and preservation of nonmethylatedsites (NMSP) were evaluated. MSAP profiles were used for Agglomerative hierarchicalclustering (AHC) based on Squared Euclidean distance and Ward’s Agglomeration method whereas MSAP characteristics for ANOVA.ResultsRelative quantitative MSAP analysis revealed that both Al-tolerant and non-tolerant triticale lines subjected to Al stress underwent demethylation, with demethylation of CG predominating over CHG. The rate of de novo methylation in the CG context was ~3-fold lower than demethylation, whereas de novo methylation of CHG was observed only in Al-tolerant lines.ConclusionsOur relative quantitative MSAP approach, based on methylation events affecting cytosines within HpaII–MspI recognition sequences, was capable of quantifying de novo methylation, demethylation, methylation, and non-methylated status in control and stressed Al-tolerant and non-tolerant triticale inbred lines. The method could also be used to analyze methylation events affecting CG and CHG contexts, which were differentially methylated under Al stress. We cannot exclude that the methylation changes revealed among lines as well as between Al-tolerant and non-tolerant groups of lines were due to some experimental errors or that the number of lines was too small for ANOVA to prove the influence of Al stress. Nevertheless, we suspect that Al tolerance in triticale could be partly regulated by epigenetic factors acting at the level of DNA methylation. This method provides a valuable tool for studies of abiotic stresses in plants.
Fruit taste is an important component of fruit quality, but its genetic basis is complex, making it difficult to alter by plant breeding. Thaumatin is a sweet‐tasting, flavour‐enhancing protein produced by fruits of the African plant Thaumatococcus daniellii Benth. Agrobac‐terium‐mediated transformation was used to produce two transgenic tomato lines expressing biologically active thaumatin in fruits. Transgenic tomato fruits from the T2 plant generation were sweeter than the controls and possessed a specific aftertaste as determined by sensory evaluation. These results demonstrate that transgenic expression of thaumatin could be useful for modifying tomato fruit taste, especially in breeding lines possessing poor fruit taste, such as those carrying a non‐ripening (nor) mutation.
BackgroundCrop production practices and industrialization processes result in increasing acidification of arable soils. At lower pH levels (below 5.0), aluminum (Al) remains in a cationic form that is toxic to plants, reducing growth and yield. The effect of aluminum on agronomic performance is particularly important in cereals like wheat, which has promoted the development of programs directed towards selection of tolerant forms. Even in intermediately tolerant cereals (i.e., triticale), the decrease in yield may be significant. In triticale, Al tolerance seems to be influenced by both wheat and rye genomes. However, little is known about the precise chromosomal location of tolerance-related genes, and whether wheat or rye genomes are crucial for the expression of that trait in the hybrid.ResultsA mapping population consisting of 232 advanced breeding triticale forms was developed and phenotyped for Al tolerance using physiological tests. AFLP, SSR and DArT marker platforms were applied to obtain a sufficiently large set of molecular markers (over 3000). Associations between the markers and the trait were tested using General (GLM) and Multiple (MLM) Linear Models, as well as the Statistical Machine Learning (SML) approach. The chromosomal locations of candidate markers were verified based on known assignments of SSRs and DArTs or by using genetic maps of rye and triticale.Two candidate markers on chromosome 3R and 9, 15 and 11 on chromosomes 4R, 6R and 7R, respectively, were identified. The r2 values were between 0.066 and 0.220 in most cases, indicating a good fit of the data, with better results obtained with the GML than the MLM approach. Several QTLs on rye chromosomes appeared to be involved in the phenotypic expression of the trait, suggesting that rye genome factors are predominantly responsible for Al tolerance in triticale.ConclusionsThe Diversity Arrays Technology was applied successfully to association mapping studies performed on triticale breeding forms. Statistical approaches allowed the identification of numerous markers associated with Al tolerance. Available rye and triticale genetic maps suggested the putative location of the markers and demonstrated that they formed several linked groups assigned to distinct chromosomes (3R, 4R, 6R and 7R). Markers associated with genomic regions under positive selection were identified and indirectly mapped in the vicinity of the Al-tolerant markers. The present findings were in agreement with prior reports.
Triticale (x Triticosecale Wittmack) is a relatively new cereal crop. In Poland, triticale is grown on 12 % of arable land (http://www.stat.gov.pl). There is an increasing interest in its cultivation due to lowered production costs and increased adaptation to adverse environmental conditions. However, it has an insufficient tolerance to the presence of aluminum ions (Al3+) in the soil. The number of genes controlling aluminum tolerance in triticale and their chromosomal location is not known. Two F2 mapping biparental populations (MP1 and MP15) segregating for aluminum (Al) tolerance were tested with AFLP, SSR, DArT, and specific PCR markers. Genetic mapping enabled the construction of linkage groups representing chromosomes 7R, 5R and 2B. Obtained linkage groups were common for both mapping populations and mostly included the same markers. Composite interval mapping (CIM) allowed identification of a single QTL that mapped to the 7R chromosome and explained 25 % (MP1) and 36 % (MP15) of phenotypic variation. The B1, B26 and Xscm150 markers were 0.04 cM and 0.02 cM from the maximum of the LOD function in the MP1 and MP15, respectively and were highly associated with aluminum tolerance as indicated by Kruskal–Wallis nonparametric test. Moreover, the molecular markers B1, B26, Xrems1162 and Xscm92, previously associated with the Alt4 locus that encoded an aluminum-activated malate transporter (ScALMT1) that was involved in Al tolerance in rye (Secale cereale) also mapped within QTL. Biochemical analysis of plants represented MP1 and MP15 mapping populations confirmed that the QTL located on 7R chromosome in both mapping populations is responsible for Al tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.