In this article, we evaluate the efficiency and performance of two clustering algorithms: AHC (Agglomerative Hierarchical Clustering) and K−Means. We are aware that there are various linkage options and distance measures that influence the clustering results. We assess the quality of clustering using the Davies–Bouldin and Dunn cluster validity indexes. The main contribution of this research is to verify whether the quality of clusters without outliers is higher than those with outliers in the data. To do this, we compare and analyze outlier detection algorithms depending on the applied clustering algorithm. In our research, we use and compare the LOF (Local Outlier Factor) and COF (Connectivity-based Outlier Factor) algorithms for detecting outliers before and after removing 1%, 5%, and 10% of outliers. Next, we analyze how the quality of clustering has improved. In the experiments, three real data sets were used with a different number of instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.