Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN -a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP).In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results.
Docking is one of the most important steps in virtual screening pipelines, and it is an established method for examining potential interactions between ligands and receptors. However, this method is computationally expensive, and it is often among the last steps of the process of compound libraries evaluation. In this work, we investigate the feasibility of learning a deep neural network to predict the docking output directly from a two-dimensional compound structure. The developed protocol is orders of magnitude faster than typical docking software, and it returns ligand−receptor complexes encoded in the form of the interaction fingerprint. Its speed and efficiency unlock the application possibilities, such as screening compound libraries of vast size on the basis of contact patterns or docking score (derived on the basis of predicted interaction schemes). We tested our approach on several G protein-coupled receptor targets and 4 CYP enzymes in retrospective virtual screening experiments, and a variant of graph convolutional network appeared to be most effective in emulating docking results. The method can be easily used by the community based on the code available in the Supporting Information.
During the drug design process, one must develop a molecule, which structure satisfies a number of physicochemical properties. To improve this process, we introduce Mol-CycleGAN-a CycleGAN-based model that generates compounds optimized for a selected property, while aiming to retain the already optimized ones. In the task of constrained optimization of penalized logP of drug-like molecules our model significantly outperforms previous results.
With the number of affected individuals still growing world-wide, the research on COVID-19 is continuously expanding. The deep learning community concentrates their efforts on exploring if neural networks can potentially support the diagnosis using CT and radiograph images of patients’ lungs. The two most popular publicly available datasets for COVID-19 classification are COVID-CT and COVID-19 Image Data Collection. In this work, we propose a new dataset which we call COVID-19 CT&Radiograph Image Data Stock. It contains both CT and radiograph samples of COVID-19 lung findings and combines them with additional data to ensure a sufficient number of diverse COVID-19-negative samples. Moreover, it is supplemented with a carefully defined split. The aim of COVID-19 CT&Radiograph Image Data Stock is to create a public pool of CT and radiograph images of lungs to increase the efficiency of distinguishing COVID-19 disease from other types of pneumonia and from healthy chest. We hope that the creation of this dataset would allow standardisation of the approach taken for training deep neural networks for COVID-19 classification and eventually for building more reliable models.
Every year billions of birds migrate between their breeding and wintering areas. As birds are an important indicator in nature conservation, migratory bird studies have been conducted for many decades, mostly by bird-ringing programmes and direct observation. However, most birds migrate at night, and therefore much information about their migration is lost. Novel methods have been developed to overcome this difficulty; including thermal imaging, radar, geolocation techniques, and acoustic recognition of bird calls. Many bird species are detected by their characteristic sounds. This method of identification occurs more often than by direct observation, and therefore recordings are widely used in avian research. The commonly used approach is to record the birds automatically, and to manually study the bird sounds in the recordings afterwards (Furnas and Callas 2015, Frommolt 2017). However, the tagging of recordings is a tedious and time-consuming process that requires expert knowledge, and, as a result, automatic detection of flight calls is in high demand. The first experiments towards this used energy thresholds or template matching (Bardeli et al. 2010, Towsey et al. 2012), and later on the machine and deep learning methods were applied (Stowell et al. 2018). Nevertheless, not many studies have focused specifically on night flight calls (Salamon et al. 2016, Lostanlen et al. 2018). Such acoustic monitoring could complement daytime avian research, especially when the field recording station is close to the bird-ringing station, as it is in our project. In this study, we present the initial results of a long-term bird audio monitoring project using automatic methods for bird detection. Passive acoustic recorders were deployed at a narrow spit between a lake and the Baltic sea in Dąbkowice, West Pomeranian Voivodeship, Poland . We recorded bird calls nightly from sunset till sunrise during the passerine autumn migration for 3 seasons. As a result, we collected over 3000 hours of recordings each season. We annotated a subset of over 50 hours, from different nights with various weather conditions. As avian flight calls are sporadic and short, we created a balanced set for training - recordings were divided into partially overlapping 500-ms clips, and we retained all clips containing calls and created about the same number of clips without bird sounds. Different signal representations were then examined (e.g. mel-spectrograms and multitaper). Afterwards, various convolutional neural networks were checked and their performance was compared using the area under the receiver operating characteristic curve (AUC) measure. Moreover, an initial attempt was made to take advantage of the transfer learning from image classification models. The results obtained by the deep learning methods are promising (AUC exceeding 80%), but higher bird detection accuracy is still needed. For a chosen bird species – Song thrush (Turdus philomelos) – we observed a correlation between calls recorded at night and birds caught in the nets during the day. This fact, as well as the promising results from the detection of calls from long-term recordings, indicate that acoustic monitoring of nocturnal birds has great potential and could be used to supplement the research of the phenomenon of seasonal bird migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.