Nanoparticles have many applications both in industry and medicine. Depending upon their physical and chemical properties, they can be used as carriers of therapeutic molecules or as therapeutics. Nanoparticles are made of synthetic or natural polymers, lipids or metals. Their use allows for faster transport to the place of action, thus prolonging its presence in the body and limiting side effects. In addition, the use of such a drug delivery system protects the drug from rapid disintegration and elimination from the body. In recent years, the use of proteins and peptides as therapeutic molecules has grown significantly. Unfortunately, proteins are subject to enzymatic digestion and can cause unwanted immune response beyond therapeutic action. The use of drug carriers can minimize undesirable side effects and reduce the dose of medication needed to achieve the therapeutic effect. The current study presents the use of several selected drug delivery systems for the delivery of proteins, peptides and other therapeutic molecules.
Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis. After immobilization on gold nanoparticles, recombinant catalase activity was found to be lower than that of the same amount of enzyme in aqueous solution. However, after 10 days of storage at room temperature, the activity of catalase immobilized on gold nanoparticles (AuNPs) of 13 and 20 nm and coverage of 133% was 68 and 83% greater than catalase in aqueous solution, respectively. During 10 days of experiment, percentage activity of catalase immobilized on those gold nanoparticles was higher in comparison to CAT in aqueous solution. Catalase immobilized on silver nanoparticles did not lose activity as significantly as catalase immobilized on AuNPs. Those results confirm the ability to produce recombinant human enzymes in a bacterial expression system and its potential use while immobilized on silver or gold nanoparticles.
Superoxide dismutase (SOD) is one of the best characterized enzyme maintaining the redox state in the cell. A bacterial expression system was used to produce human recombinant manganese SOD with a His-tag on the C-end of the protein for better purification. In addition, gold and silver nanoparticles were chemically synthesized in a variety of sizes, and then mixed with the enzyme for immobilization. Analysis by dynamic light scattering and scanning transmission electron microscopy revealed no aggregates or agglomerates of the obtained colloids. After immobilization of the protein on AuNPs and AgNPs, the conjugates were analyzed by SDS-PAGE. It was determined that SOD was adsorbed only on the gold nanoparticles. Enzyme activity was analyzed in colloids of the gold and silver nanoparticles bearing SOD. The presence of a nanoparticle did not affect enzyme activity; however, the amount of protein and size of the gold nanoparticle did influence the enzymatic activity of the conjugate. Our findings confirm that active recombinant human superoxide dismutase can be produced using a bacterial expression system, and that the enzyme can be immobilized on metal nanoparticles. The interaction between enzymes and metal nanoparticles requires further investigation.
Aim: Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. Materials & methods: The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2′deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. Results: The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2′deoksyguanozine levels also SOD and CAT activity and expression increased. The tested enzymes influence glutathione peroxidase activity and level of total antioxidant capacity and glutathione. Conclusion: Immobilized enzymes increased the antioxidative potential of skin following UV irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.