Background Implementing automated facial expression recognition on mobile devices could provide an accessible diagnostic and therapeutic tool for those who struggle to recognize facial expressions, including children with developmental behavioral conditions such as autism. Despite recent advances in facial expression classifiers for children, existing models are too computationally expensive for smartphone use. Objective We explored several state-of-the-art facial expression classifiers designed for mobile devices, used posttraining optimization techniques for both classification performance and efficiency on a Motorola Moto G6 phone, evaluated the importance of training our classifiers on children versus adults, and evaluated the models’ performance against different ethnic groups. Methods We collected images from 12 public data sets and used video frames crowdsourced from the GuessWhat app to train our classifiers. All images were annotated for 7 expressions: neutral, fear, happiness, sadness, surprise, anger, and disgust. We tested 3 copies for each of 5 different convolutional neural network architectures: MobileNetV3-Small 1.0x, MobileNetV2 1.0x, EfficientNetB0, MobileNetV3-Large 1.0x, and NASNetMobile. We trained the first copy on images of children, second copy on images of adults, and third copy on all data sets. We evaluated each model against the entire Child Affective Facial Expression (CAFE) set and by ethnicity. We performed weight pruning, weight clustering, and quantize-aware training when possible and profiled each model’s performance on the Moto G6. Results Our best model, a MobileNetV3-Large network pretrained on ImageNet, achieved 65.78% accuracy and 65.31% F1-score on the CAFE and a 90-millisecond inference latency on a Moto G6 phone when trained on all data. This accuracy is only 1.12% lower than the current state of the art for CAFE, a model with 13.91x more parameters that was unable to run on the Moto G6 due to its size, even when fully optimized. When trained solely on children, this model achieved 60.57% accuracy and 60.29% F1-score. When trained only on adults, the model received 53.36% accuracy and 53.10% F1-score. Although the MobileNetV3-Large trained on all data sets achieved nearly a 60% F1-score across all ethnicities, the data sets for South Asian and African American children achieved lower accuracy (as much as 11.56%) and F1-score (as much as 11.25%) than other groups. Conclusions With specialized design and optimization techniques, facial expression classifiers can become lightweight enough to run on mobile devices and achieve state-of-the-art performance. There is potentially a “data shift” phenomenon between facial expressions of children compared with adults; our classifiers performed much better when trained on children. Certain underrepresented ethnic groups (e.g., South Asian and African American) also perform significantly worse than groups such as European Caucasian despite similar data quality. Our models can be integrated into mobile health therapies to help diagnose autism spectrum disorder and provide targeted therapeutic treatment to children.
BACKGROUND Implementing automated emotion recognition on mobile devices could provide an accessible diagnostic and therapeutic tool for those who struggle to recognize emotion, including children with developmental behavioral conditions such as autism. Although recent advances have been made in building more accurate emotion classifiers, existing models are too computationally expensive to be deployed on smartphones. OBJECTIVE In this study, we explored the deployment of several state-of-the-art emotion classifiers designed for usage on mobile devices. We additionally explored various post-training optimization techniques for both classification performance and efficiency on a Motorola Moto G6 phone. METHODS We collected images from twelve public datasets and used video frames crowdsourced from the GuessWhat app to train our classifiers. All images were annotated for 7 emotions: neutrality, fear, happiness, sadness, surprise, anger, and disgust. We tested two copies for each of five different convolutional neural network architectures: MobileNetV3-Small 1.0x, MobileNetV2 1.0x, EfficientNetB0, MobileNetV3-Large 1.0x, and NASNetMobile. The first copy trained on images from all public datasets but excluded the GuessWhat frames, which the second copy included. We evaluated each model against the Child Affective Facial Expression set. We then performed weight pruning, weight clustering, and quantize-aware training when possible and profiled the performance of each model on the Moto G6. RESULTS Our best model, a MobileNetV3-Large network pre-trained on ImageNet, achieved 65.21% balanced accuracy and 64.50% F1-score on CAFE while achieving a 90-millisecond inference latency on a Motorola Moto G6 phone when trained on all public datasets and the GuessWhat images. This balanced accuracy is only 1.89% lower than the current state of the art for CAFE, a model with 13.91x more parameters and which was unable to run on the Moto G6 due to its size, even when fully optimized. CONCLUSIONS This work demonstrates that with specialized design and optimization techniques, machine learning models can become lightweight enough to run on mobile devices while achieving high performance on difficult image classification tasks. The models developed in this study can be integrated into mobile health therapies to diagnose ASD and to provide targeted therapeutic treatment to children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.