We examine the use of ambient noise cross‐correlation tomography for shallow site characterization using a modified two‐step approach. Initially, we extract Rayleigh wave traveltimes from correlation traces of vertical component seismic recordings from a local network installed in Mygdonia basin, northern Greece. The obtained Rayleigh wave traveltimes show significant spatial variability, as well as distance and frequency dependence due to the 3‐D structure of the area, dispersion, and anelastic attenuation effects. The traveltime data sets are inverted through a surface wave tomography approach to determine group velocity maps for each frequency. The proposed tomographic inversion involves the use of approximate Fresnel volumes and interfrequency smoothing constraints to stabilize the results. In the last step, we determine a final 3‐D velocity model using a node‐based Monte Carlo 1‐D dispersion curve inversion. The reliability of the final 3‐D velocity model is examined by spatial and depth resolution analysis, as well as by inversion for different model parameterizations. The obtained results are in very good agreement with previous findings from seismic and other geophysical methods. The new 3‐D VS model provides additional structural constraints for the shallow sediments and bedrock structure of the northern Mygdonia basin up to the depth of ∼200–250 m. Present work results suggest that the migration of ambient tomography techniques from large scales (tens or hundreds of km) to local scales (few hundred meters) is possible but cannot be used as a black box technique for 3‐D modeling and detailed geotechnical site characterization.
Since 2009, 91 new strong-motion stations were built for the renewal of the Swiss Strong Motion Network. Another nine stations will be installed until 2022. For each new station, an extensive site characterization study is performed to model the 1D seismic-velocity profile and, for some sites, the liquefaction potential. Geophysical (passive and active surface-wave methods) and geotechnical cone penetration test (CPT) with additional pore-pressure measurement (CPTu) and seismic CPT (SCPT) methods are used. Analyzing the passive and active recordings with a variety of established and advanced methods, the fundamental frequency of the site, the polarization of the wavefield, the Love- and Rayleigh-wave phase-velocity dispersion curves, and the Rayleigh-wave ellipticity function are retrieved. The liquefaction potential is assessed using CPTu. SCPT measurements are sometimes used to determine the shallow underground structure. The benefits of the combination of different appropriate methods are shown for two examples—the borehole station SBUS in Buochs and the upcoming borehole station SCME in Collombey-Muraz. At both the sites, the CPTu measurements show an elevated liquefaction potential. Combining the passive and active data, the dispersion curves for Love and Rayleigh waves and Rayleigh-wave ellipticity curves are retrieved over a wide-frequency range and inverted for the S-wave velocity profile, in which the shallow part is constrained by the active or SCPT data, the intermediate part by the dispersion curves of the passive methods, and the deepest part by the ellipticity information. For Buochs, the 1D SH-wave amplification functions modeled for the velocity profiles are compared with the empirical amplification for earthquake recordings. Finally, an overview of the site characterization results for 52 of the newly installed seismic stations is given.
We compute seismic velocity profiles by a combined inversion of surface-wave phase-velocity dispersion curves together with the full spectrum of the microtremor horizontal-to-vertical (H/V) spectral ratio at two sediment-covered sites in Germany. The sediment deposits are approximately 100 m thick at the first test site and approximately 400 m thick at the second test site. We have used an extended physical model based on the diffuse wavefield assumption for the interpretation of the observed microtremor H/V spectral ratio. The extension includes the interpretation of the microtremor H/V spectral ratio observed at depth (in boreholes). This full-wavefield approach accounts for the energy contribution from the body and surface waves, and thus it allows for inverting the properties of the shallow subsurface. We have obtained the multimode phase velocity dispersion curves from an independent study, and a description of the extracted branches and their interpretation was developed. The inversion results indicate that the combined approach using seismic ambient noise and actively generated surface-wave data will improve the accuracy of the reconstructed near-surface velocity model, a key step in microzonation, geotechnical engineering, seismic statics corrections, and reservoir imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.