The substituted carboxylate compounds N-(3-propanoic acid)-1,8-naphthalimide (HL(C2)) and N-(4-butanoic acid)-1,8-naphthalimide (HL(C3)) react with Cu(2)(O(2)CCH(3))(4)(H(2)O)(2) in the presence of either pyridine (py) or 4,4'-bipyridine (bipy) to produce the dimeric complexes [Cu(2)(L(C2))(4)(py)(2)].2(CH(2)Cl(2)).(CH(3)OH) (1), [Cu(2)(L(C3))(4)(py)(2)].2(CH(2)Cl(2)) (2), [Cu(2)(L(C2))(4)(bipy)].unknown solvent (3), and [Cu(2)(L(C3))(4)(bipy)].(CH(3)OH)(2).(CH(2)Cl(2))(3.37) (4). The core of these four compounds contains the square Cu(2)(O(2)CR)(4) "paddlewheel" secondary building unit (SBU) structural motif with nonbonding Cu...Cu distances that average 2.66 A, with each copper in a nearly square pyramidal geometry. Strong pi-pi stacking interactions of the 1,8-naphthalimide groups organize the structures of 1 and 2 into sheets and into a three-dimensional structure for 1. The propylene connector in the L(C3) ligand allows an arrangement of the 1,8-naphthalimide groups that is different from the square shape of the SBU core. Use of the 4,4'-bipyridine linking ligand produces a three-dimensional structure for 4 organized by both covalent bonds and noncovalent forces where the 1,8-naphthalimide groups organize into a sheet structure and the 4,4'-bipyridine ligands link the sheets. In contrast, in 3, the 1,8-naphthalimide groups overlap to form only one-dimensional ribbons, with the second dimension formed by the 4,4'-bipyridine ligands and the third dimension linked by mechanical interlocking of these two-dimensional units. Although many of the pi-pi stacking interactions of the 1,8-naphthalimide groups are made with the dipole vectors of this group oriented at 180 degrees (head-to-tail arrangement), skewed arrangements are observed in many cases. Ab initio calculations show that the interaction is relatively insensitive to this angle of rotation, apart from the region of steric repulsion when the rotation angle of the dipoles approaches 0 degrees. Structural results also demonstrate that the rings can slip with respect to each other and maintain substantial interactions. Magnetic measurements show that the compounds are strongly antiferromagnetically coupled with J values ranging from -270 to -341 cm⁻¹, values typical for these types of dimers. [corrected]
The reactions of bifunctional carboxylate ligands (1,8-naphthalimido)propanoate, (L(C2)(-)), (1,8-naphthalimido)ethanoate, (L(C1)(-)), and (1,8-naphthalimido)benzoate, (L(C4)(-)) with Cu(2)(O(2)CCH(3))(4)(H(2)O)(2) in methanol or ethanol at room temperature lead to the formation of novel dimeric [Cu(2)(L(C2))(4)(MeOH)(2)] (1), [Cu(2)(L(C1))(4)(MeOH)(2)]·2(CH(2)Cl(2)) (2), [Cu(2)(L(C4))(4)(EtOH)(2)]·2(CH(2)Cl(2)) (3) complexes. When the reaction of L(C1)(-) with Cu(2)(O(2)CCH(3))(4)(H(2)O)(2) was carried out at -20 °C in the presence of pyridine, [Cu(2)(L(C1))(4)(py)(4)]·2(CH(2)Cl(2)) (4) was produced. At the core of complexes 1-3 lies the square Cu(2)(O(2)CR)(4) "paddlewheel" secondary building unit, where the two copper centers have a nearly square pyramidal geometry with methanol or ethanol occupying the axial coordination sites. Complex 4 contains a different type of dimeric core generated by two κ(1)-bridging carboxylate ligands. Additionally, two terminal carboxylates and four trans situated pyridine molecules complete the coordination environment of the five-coordinate copper(II) centers. In all four compounds, robust π···π stacking interactions of the naphthalimide rings organize the dimeric units into two-dimensional sheets. These two-dimensional networks are organized into a three-dimensional architecture by two different noncovalent interactions: strong π···π stacking of the naphthalimide rings (also the pyridine rings for 4) in 1, 3, and 4, and intermolecular hydrogen bonding of the coordinated methanol or ethanol molecules in 1-3. Magnetic measurements show that the copper ions in the paddlewheel complexes 1-3 are strongly antiferromagnetically coupled with -J values ranging from 255 to 325 cm(-1), whereas the copper ions in 4 are only weakly antiferromagnetically coupled. Typical values of the zero-field splitting parameter D were found from EPR studies of 1-3and the related known complexes [Cu(2)(L(C2))(4)(py)(2)]·2(CH(2)Cl(2))·(CH(3)OH), [Cu(2)(L(C3))(4)(py)(2)]·2(CH(2)Cl(2)) and [Cu(2)(L(C3))(4)(bipy)]·(CH(3)OH)(2)·(CH(2)Cl(2))(3.37) (L(C3)(-) = (1,8-naphthalimido)butanoate)), while its abnormal magnitude in [Cu(2)(L(C2))(4)(bipy)] was qualitatively rationalized by structural analysis and DFT calculations.
A series of molecules containing a carboxylic acid and a 1,8-naphthalimide group joined by different linkers (HL C1 = CH2; HL C2 = CH2CH2; HL C3 = CH2CH2CH2; HL ophen = ortho-C6H4; HL C4 = para-C6H4; HL ala = S-CHCH3) have been prepared and structurally characterized. The structures of HL C1 , HL C3 , and HL ala are similar, with alternating hydrogen bonding of the carboxylic acids and π···π stacking interactions of the naphthalimide groups assembling the molecules into parallel chains that are linked into sheets by a second set of π···π stacking interactions. Hydrogen bonding and π···π stacking interactions of the naphthalimide groups also assemble HL C2 into chains, but the chains are alternately oriented at nearly right angles causing the interchain π···π stacking interaction to organize the chains in an open three-dimensional structure. Three of these open structural units interpenetrate forming a unique three-dimensional network. The rigid ortho-arene linker in HL ophen directs the orientation of the π···π stacking interaction of the naphthalimide rings to be at 60°; when combined with the hydrogen bonding interactions helical one-dimensional chains form that pack into a unique rhombohedral architecture. In the structure of HL C4 ·DMF, each acid group is hydrogen bonded with the dimethylformamide (DMF) molecule; the structure contains one-dimensional ribbons supported only by the π···π stacking interactions from the 1,8-naphthalimide groups. All six molecules show fluorescence in the 432–449 nm region. Overall these structural studies show that the 1,8-naphthalimide supramolecular synthon is extremely versatile because it can simultaneously enter into multiple noncovalent interactions.
Tri- and tetrafunctional enantiopure ligands have been prepared from 1,8-naphthalic anhydride and the amino acids L-alanine, D-phenylglycine, and L-asparagine to produce (S)-2-(1,8-naphthalimido)propanoic acid (HL(ala)), (R)-2-(1,8-naphthalimido)-2-phenylacetic acid (HL(phg)), and (S)-4-amino-2-(1,8 naphthalimido)-4-oxobutanoic acid (HL(asn)), respectively. Reactions of L(ala)(-) with copper(II) acetate under a variety of solvent conditions has led to the formation and characterization by X-ray crystallography of three similar copper(II) paddlewheel complexes with different axial ligands, [Cu(2)(L(ala))(4)(THF)(2)] (1), [Cu(2)(L(ala))(4)(HL(ala))] (2), and [Cu(2)(L(ala))(4)(py)(THF)] (3). A similar reaction using THF and L(phg)(-) leads to the formation of [Cu(2)(L(phg))(4)(THF)(2)] (4). With the exception of a disordered component in the structure of 4, the naphthalimide groups in all of these compounds are arranged on the same side of the square, central paddlewheel unit, forming what is known as the chiral crown configuration. A variety of π···π stacking interactions of the 1,8-naphthalimide groups organize all of these complexes into supramolecular structures. The addition of the amide group functionality in the L(asn)(-) ligand leads to the formation of tetrameric [Cu(4)(L(asn))(8)(py)(MeOH)] (5), where reciprocal axial coordination of one of the amide carbonyl oxygen atoms between two dimers leads to the tetramer. Extensive supramolecular interactions in 5, mainly the π···π stacking interactions of the 1,8-naphthalimide supramolecular synthon, support an open three-dimensional structure containing large pores filled with solvent. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to (S)-ethyl lactate vapor, the coordinated methanol molecule is replaced by (S)-ethyl lactate, bonding to the copper ion through the carbonyl oxygen, yielding [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)] (6) without a loss of crystallinity. With the exception of the replacement of the one axial ligand, the molecular structures of 5 and 6 are very similar. In a similar experiment of 5 with vapors of (R)-ethyl lactate, again a change occurs without a loss of crystallinity, but in this case the (R)-ethyl lactate displaces only slightly more than half of the axial methanol molecules forming [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] (7). Importantly, in 7, the (R)-ethyl lactate coordinates through the hydroxyl group. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to vapors of racemic ethyl lactate, the coordinated methanol molecule is displaced without a loss of crystallinity exclusively by (S)-ethyl lactate, yielding a new form of the tetramer [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], in which the ethyl lactate in the pocket bonds to the copper(II) ion through the carbonyl oxygen as with 6. Exposure of [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] to racemic ethyl lactate yields a third form of [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], where the three forms of [Cu(4)(L(asn))(8)(py)(...
The ligand 4-(1,8-naphthalimido)benzoate, L(C4)(-), containing a linear link between the strong π···π stacking 1,8-naphthalimide supramolecular synthon and the carboxylate donor group, reacts with Zn(O(2)CCH(3))(2)(H(2)O)(2) in the presence of dimethylsulfoxide (DMSO) to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)). This compound contains the "paddlewheel" Zn(2)(O(2)CR)(4) secondary building unit (SBU) that organizes the rigid phenylene and naphthalimide rings of the carboxylate ligands in a square arrangement. The supramolecular architecture is dominated by π···π stacking interactions between naphthalimide rings of one dimer with four adjacent dimers, essentially at right angles, forming an open three-dimensional network structure. Two symmetry equivalent networks of this type interpenetrate generating overall a densely packed three-dimensional, 2-fold interpenetrated architecture in which the CH(2)Cl(2) solvate molecules are trapped in isolated pockets. Upon cooling, single crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo two distinct crystallographic phase transitions, as characterized by X-ray diffraction at different temperatures, without loss of crystallinity. These two new phases have supramolecular structures very similar to the room temperature structure, but changes in the ordering of the CH(2)Cl(2) solvate cause shifting of the naphthalimide rings and a lowering of the symmetry. Crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo a single-crystal to single-crystal gas/solid guest exchange upon exposure to atmospheric moisture, or faster if placed under vacuum or heated under dry gas to 100 °C, followed by atmospheric moisture, to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O). The molecular and supramolecular structures of this new compound are very similar to the dichloromethane adduct, with now the water molecules encapsulated into the framework. The remarkable feature of both the phase changes and exchange of solvates is that this robust network is not porous; local distortions (ring slippage and tilting changes) of the π···π stacking interactions of the naphthalimide rings that organize these structures allow these changes to take place without the loss of crystallinity. The complexes [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) and [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O) show green emission in the solid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.