One of the key issues in quantum information theory related problems concerns with that of distinguishability of quantum states. In this context, Bures distance serves as one of the foremost choices among various distance measures. It also relates to fidelity, which is another quantity of immense importance in quantum information theory. In this work, we derive exact results for the average fidelity and variance of the squared Bures distance between a fixed density matrix and a random density matrix, and also between two independent random density matrices. These results supplement the recently obtained results for the mean root fidelity and mean of squared Bures distance [Phys. Rev. A 104, 022438 ( 2021)]. The availability of both mean and variance also enables us to provide a gamma-distribution-based approximation for the probability density of the squared Bures distance. The analytical results are corroborated using Monte Carlo simulations. Furthermore, we compare our analytical results with the mean and variance of the squared Bures distance between reduced density matrices generated using coupled kicked tops, and a correlated spin chain system in a random magnetic field. In both cases, we find good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.