Familial British dementia (FBD), previously designated familial cerebral amyloid angiopathy-British type, is an autosomal dominant disorder of undetermined origin characterized by progressive dementia, spasticity, and cerebellar ataxia, with onset at around the fifth decade of life. Cerebral amyloid angiopathy, non-neuritic and perivascular plaques and neurofibrillary tangles are the predominant pathological lesions. Here we report the identification of a unique 4K protein subunit named ABri from isolated amyloid fibrils. This highly insoluble peptide is a fragment of a putative type-II single-spanning transmembrane precursor that is encoded by a novel gene, BRI, located on chromosome 13. A single base substitution at the stop codon of this gene generates a longer open reading frame, resulting in a larger, 277-residue precursor. Release of the 34 carboxy-terminal amino acids from the mutated precursor generates the ABri amyloid subunit. The mutation creates a cutting site for the restriction enzyme XbaI, which is useful for detecting asymptomatic carriers. Antibodies against the amyloid or homologous synthetic peptides recognize both parenchymal and vascular lesions in FBD patients. A point mutation at the stop codon of BRI therefore results in the generation of the ABri peptide, which is deposited as amyloid fibrils causing neuronal disfunction and dementia.
Familial Danish dementia (FDD), also known as heredopathia ophthalmo-oto-encephalica, is an autosomal dominant disorder characterized by cataracts, deafness, progressive ataxia, and dementia. Neuropathological findings include severe widespread cerebral amyloid angiopathy, hippocampal plaques, and neurofibrillary tangles, similar to Alzheimer's disease. N-terminal sequence analysis of isolated leptomeningeal amyloid fibrils revealed homology to ABri, the peptide originated by a point mutation at the stop codon of gene BRI in familial British dementia. Molecular genetic analysis of the BRI gene in the Danish kindred showed a different defect, namely the presence of a 10-nt duplication (795-796insTTTAATTTGT) between codons 265 and 266, one codon before the normal stop codon 267. The decamer duplication mutation produces a frame-shift in the BRI sequence generating a larger-than-normal precursor protein, of which the amyloid subunit (designated ADan) comprises the last 34 C-terminal amino acids. This de novo-created amyloidogenic peptide, associated with a genetic defect in the Danish kindred, stresses the importance of amyloid formation as a causative factor in neurodegeneration and dementia.
Cerebral amyloid angiopathy (CAA) is an age-associated condition and a common finding in Alzheimer's disease in which amyloid-beta (Abeta) vascular deposits are featured in >80% of the cases. Familial Abeta variants bearing substitutions at positions 21-23 are primarily associated with CAA, although they manifest with strikingly different clinical phenotypes: cerebral hemorrhage or dementia. The recently reported Piedmont L34V Abeta mutant, located outside the hot spot 21-23, shows a similar hemorrhagic phenotype, albeit less aggressive than the widely studied Dutch E22Q variant. We monitored the apoptotic events occurring after stimulation of human brain microvascular endothelial and smooth muscle cells with nonfibrillar structures of both variants and wild-type Abeta40. Induction of analogous caspase-mediated mitochondrial pathways was elicited by all peptides, although within different time frames and intensity. Activated pathways were susceptible to pharmacological modulation either through direct inhibition of mitochondrial cytochrome c release or by the action of pan- and pathway-specific caspase inhibitors, giving a clear indication of the independent or synergistic engagement of both extrinsic and intrinsic mechanisms. Structural analyses of the Abeta peptides showed that apoptosis preceded fibril formation, correlating with the presence of oligomers and/or protofibrils. The data support the notion that rare genetic mutations constitute unique paradigms to understand the molecular pathogenesis of CAA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.