One factor which influences the success of poverty alleviation program is to determine where the poverty is concentrated. There are 15 provinces that have a value index of poverty depth (P1) higher than the value of P1 Indonesia. This study will describe the characteristics of poverty in 15 provinces; identify key factors affecting poverty at the macro level; and the relationship between each of the major factors in P1. Based on factor analysis obtained there are three main factors that characterize the 15 poor provinces, which are employment, education, and residence. Logistic regression analysis showed the relationship between employment factors and education with the negative P1. Both employment and educational factors have a significant effect on P1. Meanwhile, factor of residence was positively related to P1 but the effect is not significant.
In 2018, Indonesia implemented a Governor's Election which included 17 provinces. For several months before the Election, news and opinions regarding the Governor's Election were often trending topics on Twitter. This study aims to describe the results of sentiment mining and determine the best method for predicting sentiment classes. Sentiment mining is based on Lexicon. While the methods used for sentiment analysis are Naive Bayes and C5.0. The results showed that the percentage of positive sentiment in 17 provinces was greater than the negative and neutral sentiments. In addition, method C5.0 produces a better prediction than Naive Bayes.
Kondisi pembangunan manusia di suatu wilayah dapat digambarkan dengan perhitungan Indeks Pembangunan Manusia (IPM). Komponen yang membentuk IPM cenderung memiliki korelasi yang kuat antara satu dan yang lain, kondisi ini sering disebut multikolinieritas. Penelitian ini bertujuan untuk mengatasi masalah multikolinieritas dalam data IPM Provinsi DKI Jakarta pada periode 2010-2016. Penerapan metode PLS dalam penelitian ini mampu mengatasi masalah multikolinieritas dan membuat asumsi Gauss Markov dalam regresi linier berganda terpenuhi.
Pada awal tahun 2020, Pandemi Covid-19 mulai melanda dunia dan Indonesia. Pandemi Covid-19 telah mengakibatkan perekonomian Indonesia menjadi lemah, termasuk perekonomian Kabupaten Gunung Mas. Sektor yang paling terkena dampak Pandemi Covid-19 adalah sektor pariwisata. Penelitian ini bertujuan untuk mengkaji potensi ekonomi dan potensi pariwisata Kabupaten Gunung Mas pada masa Pandemi Covid-19. Metode analisis yang digunakan dalam penelitian ini adalah Analisis Tipologi Klassen dan Location Quotient. Hasil penelitian ini menunjukkan bahwa terdapat empat sektor PDRB yang memiliki potensi ekonomi di Kabupaten Gunung Mas. Keempat sektor PDRB tersebut adalah Pertambangan dan Penggalian; Perdagangan Besar dan Eceran, Reparasi Mobil dan Sepeda Motor, Administrasi Pemerintah; dan Pendidikan. Selain itu, penelitian ini juga menunjukkan bahwa Kecantikan dan Kesehatan memiliki potensi pariwisata di Kabupaten Gunung Mas. Strategi yang tepat digunakan untuk mengembangkan Produk Kecantikan dan Kesehatan adalah Promosi dan Ekspansi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.