Tanda tangan merupakan tanda yang bertujuan sebagai lambang dari nama seseorang yang dituliskan menggunakan tangan orang itu sendiri sebagai penanda pribadi. Penggunaan tanda tangan tidak luput dalam kehidupan sehari-hari, penting untuk mengenal bentuk tanda tangan seseorang untuk melakukan verifikasi apakah tnada tangan tersebut milik orang yang bersangkutan atau orang lain. Pada penelitian ini penulis membuat penelitian mengenai identifikasi tanda tangan dengan menggunakan Grid Entropy dan Principal Component Analysis sebagai ekstraksi ciri. Model pembelajaran dataset menggunakan Multi Layer Perceptron dan Cross Validation menggunakan nilai parameter yang berbeda pada hidden layer dan node dalam Multi Layer Perceptron. Hasil pengujian terbaik didapatkan dari pembelajaran dataset menggunakan 2 hidden layer dengan node sebanyak 40 node di setiap hidden layer, dari skenario tersebut didapatkan akurasi sebesar 87,22%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.