Biodiesel is a promising renewable energy option that significantly reduces the emission of greenhouse gases and other toxic byproducts. However, a major challenge in the industrial scale production of biodiesel is the desired product purity. To this end, reactive distillation (RD) processes, which involve simultaneous removal of the byproduct during the transesterification reaction, can drive the equilibrium towards high product yield. In the present study, we first optimized the heat exchange network (HEN) for a high purity RD process leading to a 34% reduction in the overall energy consumption. Further, a robust control scheme is proposed to mitigate any feed disturbance in the process that may compromise the product purity. Three rigorous case studies are performed to investigate the effect of composition control in the cascade with the temperature control of the product composition. The cascade control scheme effectively countered the disturbances and maintained the fatty acid mono-alkyl ester (FAME) purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.