Ekspor dan impor barang-barang terdiri dari cakupan komoditas, sistem perdagangan, penilaian, pengukuran kuantitas dan rekan negara. Kegiatan ekspor dan import melibatkan kedua negara, yakni negara tujuan dan negara asal. Negara tujuan adalah adalah negara yang pada saat pengiriman diketahui sebagai negara terakhir dimana barang tersebut akan terkirim sedangkan negara asal adalah negara dimana barang-barang tersebut diproduksi, setelah diverifikasi oleh Kantor Bea Cukai, sesuai dengan peraturan. Penelitian ini membahas tentang Penerapan Datamining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering Method. Sumber data penelitian ini dikumpulkan berdasarkan dokumen-dokumen keterangan ekspor impor yang dihasilkan oleh Direktorat Jenderal Bea dan Cukai. Selain itu sejak tahun 2015 data ekspor juga berasal dari PT. Pos Indonesia, catatan instansi lain di perbatasan, dan hasil survei perdagangan lintas batas laut. Data yang digunakan dalam penelitian ini adalah data Ekspor Buah-buahan Menurut Negara Tujuan Utama dari tahun 2002-2015 yang terdiri dari 11 negara yakni Hongkong, Tiongkok, Singapura, Malaysia, Nepal, Vietnam, India, Pakistan, Bangladesh, Iran dan Negara Lainya. Varibale yang digunakan (1) jumlah ekspor berat bersih (netto) dan (2) nilai Free On Board (FOB). Data akan diolah dengan melakukan clustering ekspor buah-buahan berdasarkan negara tujuan utama dalam 3 cluster yaitu cluster tingkat ekspor tinggi, cluster tingkat ekspor sedang dan cluster tingkat ekspor rendah. Metode clustering yang digunakan dalam penelitian ini adalah metode K-Means. Cetroid data untuk cluster tingkat ekspor tinggi 904.276,5, Cetroid data untuk cluster tingkat ekspor sedang 265.501 dan Cetroid data untuk cluster tingkat ekspor rendah 34.280,1. Sehingga diperoleh penilaian berdasarkan indeks ekspor buah-buahan dengan 2 negara cluster tingkat ekspor tinggi yakni India dan Pakistan, 3 negara cluster tingkat ekspor sedang yakni Singapura, Bangladesh dan Negara lainnya dan 6 negara cluster tingkat ekspor rendah yakni Hongkong, Tiongkok, Malaysia, Nepal, Vietnam dan Iran. Hasil yang dari penelitian dapat digunakan untuk mengetahui jumlah ekspor buah-buahan menurut negara tujuan.
Abstrak -Data mining merupakan teknik pengolahan data dalam jumlah besar untuk pengelompokan. Teknik Data mining mempunyai beberapa metode dalam mengelompokkan salah satu teknik yang dipakai penulis saat ini adalah K-Means. Dalam hal ini penulis mengelompokan data daftar program SDP tahun 2017 untuk mengetahui manakah pegawai yang layak lolos dalam program SDP sehingga dapat melakukan Registrasi Asessment Center. Pengelompokan tersebut berdasarkan kriteria -kriteria data Program SDP. Pada penelitian ini, penulis menerapkan algoritma K-Means Clustering untuk pengelompokan data Program SDP di PT.Bank Syariah. Dalam hal ini, pada umumnya untuk memamasuki program SDP tersebut disesuaikan dengan ketentuan dan parameter Program SDP saja, namun dalam penelitian ini pengelompokan disesuaikan dengan kriteria -kriteria Program SDP seperti kedisiplinan pegawai, Target Kerja Pegawai, Kepatuhan Program SDP. Penulis menggunakan beberapa kriteria tersebut agar pengelompokan yang dihasilkan menjadi lebih optimal. Tujuan dari pengelompokan ini adalah terbentuknya kelompok SDP pada Program SDP yang menggunakan algoritma K-Means clustering. Hasil dari pengelompokan tersebut diperoleh tiga kelompok yaitu kelompok Lolos, Hampir Lolos dan Tidak Lolos. Terdapat pusat cluster dengan Cluster -1= 8;66;13, Cluster-2= 10;71;14 dan Cluster-3=7;60;12. Pusat cluster tersebut didapat dari beberapa iterasi sehingga mengahasilakan pusat cluster yang optimal.
Natural disasters are natural events that have a large impact on the human population. Located on the Pacific Ring of Fire (an area with many tectonic activities), Indonesia must continue to face the risk of volcanic eruptions, earthquakes, floods, tsunamis. Application of Clustering Algorithm in Grouping the Number of Villages / Villages According to Anticipatory / Natural Disaster Mitigation Efforts by Province With K-Means. The source of this research data is collected based on documents that contain the number of villages / kelurahan according to natural disaster mitigation / mitigation efforts produced by the National Statistics Agency. The data used in this study is provincial data consisting of 34 provinces. There are 4 variables used, namely the Natural Disaster Early Warning System, Tsunami Early Warning System, Safety Equipment, Evacuation Line. The data will be processed by clustering in 3 clushter, namely clusther high level of anticipation / mitigation, clusters of moderate anticipation / mitigation levels and low anticipation / mitigation levels. The results obtained from the assessment process are based on the Village / Kelurahan index according to the Natural Disaster Anticipation / Mitigation Efforts with 3 provinces of high anticipation / mitigation levels, namely West Java, Central Java, East Java, 9 provinces of moderate anticipation / mitigation, and 22 other provinces including low anticipation / mitigation. This can be an input to the government, the provinces that are of greater concern to the Village / Village According to the Natural Health Disaster Mitigation / Mitigation Efforts based on the cluster that has been carried out.Keywords: Data Mining, Natural Disaster, Clustering, K-Means
In an industry sales, competition is a natural thing. PENDAHULUANDalam sebuah industri penjualan persaingan merupakan hal yang wajar. Banyaknya usaha-usaha dengan jenis yang sama membuat seorang pengusaha harus memiliki strategi-strategi yang tepat dalam meningkatkan daya beli pelanggan dan menuai keuntungan. Strategi ini pula yang menaikkan persaingan dagang dengan sesama pengusaha. Salah satu strategi yang bisa diterapkan adalah
ABSTRAKAplikasi mendeley desktop sebenarnya adalah aplikasi yang diperuntukkan memudahkan dalam pembuatan sitasi dan daftar pustaka yang biasa digunakan oleh para penulis, sehingga penulis akan ditekan kesalahannya dalam membuat daftar pustaka dan memudahkan dalam memperoleh tulisan yang akan disitir. Selain membuat karya ilmiah, aplikasi ini juga dapat juga digunakan untuk mengelola file artikel jurnal online yang merupakan output dari sebuah karya ilmiah. Selanjutnya peserta dapat memanfaatkan aplikasi ini untuk keperluan pembuatan bibliografi atau kumpulan abstrak bidang tertentu dari artikel-artikel jurnal yang dilanggan. Kegiatan pelatihan yang dilaksanakan dalam kegiatan Pengabdian Masyarakat ini menunjukkan bahwa peserta memiliki pemahaman materi dan potensi untuk membuat refernsi manager yang lebih baik dan maksimal dengan memanfaatkan aplikasi mendeley desktop .Kata Kunci: mendeley desktop, referensi manager, pelatihan, pemanfaatan ABSTRACT Desktop mendeley application is actually an application intended to facilitate the creation of citations and a list of libraries commonly used by the authors, so the authors will be pressed error in making the bibliography and facilitate in obtaining the writings to be cited. In addition to creating scientific papers, this application can also be used to manage the files of online journal articles that are the output of a scientific work. Furthermore, participants can utilize this application for the purpose of making a bibliography or collection of abstracts of certain fields of journal articles subscribed. Training activities undertaken in Community Service activities show that participants have a material understanding and the potential to make refernsi managers better and maximum by utilizing mendeley desktop applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.