The examination of defects in radiographic films necessitates specialized knowledge, as indicated by an expert radiographer (AR) degree, yet the subjectivity of AR in identifying defects is problematic. To overcome this subjectivity, an automatic welding defect identification is needed. This is executed by using Matlab to create artificial neural networks, which is beneficial for users with the graphical user interface (GUI) feature. One of the breakthroughs in the figure extraction into seven feature vector values is the geometric invariant moment theory. This prevents translation, rotation, and scaling from changing the figure's characteristics. Therefore, a welding defect identification system with a geometric invariant moment was created in the digital radiographic film figure to overcome the reading error by AR. The identification system obtained an accuracy rating of 89.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.