Electron transport materials (ETMs) are considered a keystone component of third‐generation solar cells. Among the alternative ETM, metal oxide bilayers have attracted increasing attention due to their easy processing and tunability of cascade energy alignment. Herein, a metal oxide bilayer that combines ZnO and TiO2 compact films (ZnO/TiO2) is implemented as ETM for solution‐processed Sb2S3 planar solar cells. The bilayer ETM achieves the highest photovoltaic performance when compared with devices based on single ETM. Thus, the optimized device based on ZnO/TiO2 ETM yields a champion efficiency of 5.08% with an open‐circuit voltage of 0.58 V and a current density of 16.17 mA cm−2. Using surface photovoltage, electrochemical impedance spectroscopy, and current density–voltage analyses, it is demonstrated that the use of ZnO/TiO2 promotes charge injection, decreases series resistance and shutting paths, and leads to the reduction of charge recombination at the ETM/Sb2S3 interface.
Bulk and surface trap-states in the Sb2S3 films are considered one of the crucial energy loss mechanisms for achieving high photovoltaic performance in planar Sb2S3 solar cells. Because ionic liquid additives offer interesting physicochemical properties to control the synthesis of inorganic material, in this work we propose the addition of 1-Butyl-3-methylimidazolium hydrogen sulfate (BMIMHS) into a Sb2S3 hydrothermal precursor solution as a facile way to fabricate low-defect Sb2S3 solar cells. Lower presence of small particles on the surface, as well as higher crystallinity are demonstrated in the BMIMHS-assisted Sb2S3 films. Moreover, analyses of dark current density/voltage J/V curves, surface photovoltage transient and intensity-modulated photocurrent spectroscopy have suggested that adding BMIMHS results in high-quality Sb2S3 films and a successful defect passivation. Consequently, the best-performing BMIMHS-assisted device exhibits a 15.4% power conversion efficiency enhancement compared to that of control device. These findings show that ionic liquid BMIMHS can effectively be used to obtain high-quality Sb2S3 films with low-defects and improved optoelectronic properties.
A hybrid nanocomposite of Sb2O3 nanoparticles anchored on N-doped graphene nanoribbons is used as anode in SIBs. These hybrid electrodes demonstrate a high charge transfer and improved microstructure, facilitating the Na+ diffusion in the electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.