We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula. We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming. We reveal sporadic contacts between Iberia and North Africa by~2500 BCE and, by~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry. We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean.
Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 BP to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers and pastoralists by 3,000 years ago, significantly earlier than land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by over 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked at 2000 BP and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth's transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.One Sentence Summary: A map of synthesized archaeological knowledge on land use reveals a planet largely transformed by hunter-gatherers, farmers and pastoralists by 3,000 years ago.
The agricultural way of life spreads throughout Europe via two main routes: the Danube corridor and the Mediterranean basin. Current archaeological literature describes the arrival to the Western Mediterranean as a rapid process which involves both demic and cultural models, and in this regard, the dispersal movement has been investigated using mathematical models, where the key factors are time and space. In this work, we have created a compilation of all available radiocarbon dates for the whole of Iberia, in order to draw a chronological series of maps to illustrate temporal and spatial patterns in the neolithisation process. The maps were prepared by calculating the calibrated 14C date probability density curves, as a proxy to show the spatial dynamics of the last hunter-gatherers and first farmers. Several scholars have pointed out problems linked with the variability of samples, such as the overrepresentation of some sites, the degree of regional research, the nature of the dated samples and above all the archaeological context, but we are confident that the selected dates, after applying some filters and statistical protocols, constitute a good way to approach settlement spatial patterns in Iberia at the time of the neolithisation process.
In this paper, we compile recent14C dates related to the Neolithic transition in Mediterranean Iberia and present a Bayesian chronological approach for testing thedual model, a mixed model proposed to explain the spread of farming and husbandry processes in eastern Iberia. The dual model postulates the coexistence of agricultural pioneers and indigenous Mesolithic foraging groups in the Middle Holocene. We test this general model with more regional models of four geographical areas (Northeast, Upper, and Middle Ebro Valley, and Eastern and South/Southeastern regions) and present a filtered summed probability of all14C dates known in the region in order to compare socioecological dynamics over a long period. Finally, we discuss the results and analyze how certain specific characteristics of sites and their chronologies can serve for timing the Neolithic expansion in Mediterranean Iberia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.