Intraguild competition may be reduced if ecologically similar species segregate temporally. Using data from 1,596 camera-trap photos, we present the 1st quantitative analyses of the activity patterns of Andean cats (Leopardus jacobita), Pampas cats (Leopardus colocolo), culpeos (Lycalopex culpaeus), and pumas (Puma concolor) in high-altitude deserts of the Andes. We compared daily activity patterns for these carnivores with those of mountain vizcachas (Lagidium viscacia), the main prey of Andean cats. Activity patterns of all species were positively skewed toward night. Pampas cats displayed the greatest proportion of nocturnal activity, whereas Andean cats were the most diurnal. Activity of Andean cats differed significantly only from that of Pampas cats; Pampas cats also differed from pumas. Activity of Andean cats was generally similar to that of mountain vizcachas. The dissimilar activity patterns of Andean and Pampas cats support the hypothesis of temporal niche segregation of these felids.
The carnivore community of the altiplano ecosystem of the high Andes, including the Andean mountain cat (Leopardus jacobita) and pampas cat (Leopardus colocolo), is one of the least studied in the world. We determined the origin of 186 carnivore samples (184 faeces and two skulls) collected above 3000 m above sea level in northern Chile, including 33 from the Andean mountain cat and 75 from the pampas cat using diagnostic molecular genetic sequence variation. We determined for the first time food habits, habitat and physiographic associations, and general patterns of molecular genetic variation of the Andean mountain cat and the pampas cat in Chile. Both species had narrow dietary niches dominated by small rodents and there was a wide overlap in diet composition (0.82), suggesting low levels of prey partitioning between species. The mountain viscacha (Lagidium viscacia) made up a large proportion of the biomass of the diet of both species, especially for the Andean mountain cat (93.9% vs. 74.8% for the pampas cat), underscoring the importance of further research and conservation focus on this vanishing prey species. Although the probability of finding Andean mountain cat scats increased with altitude and slope, there was substantial geographical overlap in distribution between species, revealing that the pampas cat distribution includes high-altitude grassland habitats. The Andean mountain cat had relatively low levels of mitochondrial DNA (mtDNA) genetic variation (two mtDNA haplotypes) compared with the pampas cat (17 mtDNA haplotypes), suggestive of a distinct evolutionary history and relatively smaller historic populations. These insights will facilitate and provide tools and hypotheses for much-needed research and conservation efforts on these species and this ecosystem.
Aim To identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model. Location South America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina. Methods We used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data. Results Simple bioclimatic models for Andean cats were highly predictive with only 3–4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions. Main conclusions Simple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.