AbstractCompared with current conventional technologies, oxygen/nitrogen (O2/N2) separation using membrane offers numerous advantages, especially in terms of energy consumption, footprint, and capital cost. However, low product purity still becomes the major challenge for commercialization of membrane-based technologies. Therefore, numerous studies on membrane development have been conducted to improve both membrane properties and separation performance. Various materials have been developed to obtain membranes with high O2permeability and high O2/N2selectivity, including polymer, inorganic, and polymer-inorganic composite materials. The results showed that most of the polymer membranes are suitable for production of low to moderate purity O2and for production of high-purity N2. Meanwhile, perovskite membrane can be used to produce a high-purity oxygen. Furthermore, the developments of O2/N2separation using membrane broaden the applications of oxygen enrichment for oxy-combustion, gasification, desulfurization, and intensification of air oxidation reactions, while nitrogen enrichment is also important for manufacturing pressure-sensitive adhesive and storing and handling free-radical polymerization monomers.
Coating by a mussel inspired polydopamine (PDA) is a simple and promising strategy to modify the hydrophilicity of polymer membrane surfaces. In this work, PDA coating was used to modify polypropylene (PP) ultrafiltration hollow fiber membrane. PDA coating parameters, ie, solution concentration and coating time were varied, and the effect of those parameters on membrane morphology, porosity, water contact angle, and pure water flux was investigated. In addition, air‐assisted PDA coating process was also conducted by channelling the air through PP membrane to avoid pore blocking and prevent water flux decline. The results showed that PDA coating successfully improved the hydrophilicity of PP membrane indicated by the decrease of water contact angle from 110° to 67° after coated by 3 g/L of PDA solution for 3 hours. The addition of air permeation on membrane lumen also increased pure water flux up to 511.2 L/m2.h, a 270% increase from unmodified PP membrane. It might be associated to the pore blocking prevention that has been proven by SEM image and the membrane porosity that was increased about 4%.
Electrodeionization (EDI) is the most common method to produce high purity water used for boiler feed water, microelectronic, and pharmaceutical industries. Commonly, EDI is combined with reverse osmosis (RO) to meet the requirement of EDI feed water, with hardness less than 1 ppm. However, RO requires a relatively high operating pressure and ultrafiltration (UF) as pretreatment which results in high energy consumption and high complexity in piping and instrumentation. In this work, UF was used as the sole pretreatment of EDI to produce high purity water. Tap water with conductivity 248 μS/cm was fed to UF-EDI system. The UF-EDI system showed good performance with ion removal more than 99.4% and produced water with low conductivity from 0.2 to 1 μS/cm and total organic compounds less than 0.3 ppm. Generally, product conductivity decreased with the increase of current density of EDI and the decrease of feed velocity and UF pressure. The energy consumption for UF-EDI system in this work was 0.89-2.36 kWh/m. These results proved that UF-EDI system meets the standards of high purity water for pharmaceutical and boiler feed water with lower investment and energy consumption than RO-EDI system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.