actual: 152 words)The recent explosion of biomedical knowledge presents both a major opportunity and challenge for scientists tackling complex problems in healthcare. Here we present an approach for synthesizing biomedical knowledge based on a combination of word-embeddings and select cooccurrences. We evaluated our ability to recapitulate and retrospectively predict disease-gene associations from the Online Mendelian Inheritance in Man (OMIM) resource. Our metrics achieved an area under the curve (AUC) value of 0.981 at the recapitulation task for 2,400 disease-gene associations. At the most stringent cutoff, our metrics predicted 13.89% of these associations before their first cooccurrence in the literature, with a median time of 4 years between prediction and first cooccurrence. Finally, our literature metrics can be combined with human genetics data to retrospectively predict disease-gene associations, IL-6 and Giant Cell Arteritis provided as an example. We believe this framework can provide robust biomedical hypotheses at a much faster pace than current standard practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.