Growing evidence suggests that matrix metalloproteinases (MMP) are involved in thrombus dissolution; then, considering that new therapeutic strategies are required for controlling hemorrhage, we hypothesized that MMP inhibition may reduce bleeding by delaying fibrinolysis. Thus, we designed and synthesized a novel series of MMP inhibitors to identify potential candidates for acute treatment of bleeding. Structure-based and knowledge-based strategies were utilized to design this novel chemical series, α-spiropiperidine hydroxamates, of potent and soluble (>75 μg/mL) pan-MMP inhibitors. The initial hit, 12, was progressed to an optimal lead 19d. Racemic 19d showed a remarkable in vitro phenotypic response and outstanding in vivo efficacy; in fact, the mouse bleeding time at 1 mg/kg was 0.85 min compared to 29.28 min using saline. In addition, 19d displayed an optimal ADME and safety profile (e.g., no thrombus formation). Its corresponding enantiomers were separated, leading to the preclinical candidate 5 (described in Drug Annotations series, J. Med. Chem. 2015, ).
Discovery of potent and safe therapeutics that improve upon currently available antifibrinolytics, e.g., tranexamic acid (TXA, 1) and aprotinin, has been challenging. Matrix metalloproteinases (MMPs) participate in thrombus dissolution. Then we designed a novel series of optimized MMP inhibitors that went through phenotypic screening consisting of thromboelastometry and mouse tail bleeding. Our optimized lead compound, CM-352 (2), inhibited fibrinolysis in human whole blood functional assays and was more effective than the current standard of care, 1, in the tail-bleeding model using a 30 000 times lower dose. Moreover, 2 reduced blood loss during liver hepatectomy, while 1 and aprotinin had no effect. Molecule 2 displayed optimal pharmacokinetic and safety profiles with no evidence of thrombosis or coagulation impairment. This novel mechanism of action, targeting MMP, defines a new class of antihemorrhagic agents without interfering with normal hemostatic function. Furthermore, 2 represents a preclinical candidate for the acute treatment of bleeding.
Key Points• This study demonstrates a novel mechanistic role for a specific N-linked glycan in regulating PAR1 proteolysis.• We provide the first description of an APC variant with enhanced therapeutic cytoprotective activity in vivo.Activated protein C (APC) is an anticoagulant protease that initiates cell signaling via protease-activated receptor 1 (PAR1) to regulate vascular integrity and inflammatory response. In this study, a recombinant APC variant (APC N329Q ) mimicking the naturally occurring APC-b plasma glycoform was found to exhibit superior PAR1 proteolysis at a cleavage site that selectively mediates cytoprotective signaling. APC N329Q also enhanced integrin a M b 2 -dependent PAR1 proteolysis to exert significantly improved antiinflammatory activity on macrophages compared with wild-type APC. Recent therapeutic applications of recombinant APC in ischemic stroke models have used APC variants with limited anticoagulant activity to negate potential bleeding side effects. Using a mouse model of ischemic stroke and late t-PA intervention, the neuroprotective activity of a murine APC variant with limited anticoagulant activity (mAPC PS ) was compared with an identical APC variant except for the absence of glycosylation at the APC-b sequon (mAPC PS/N329Q ).Remarkably, mAPC PS/N329Q limited cerebral ischemic injury and reduced brain lesion volume significantly more effectively than mAPC PS . Collectively, this study reveals the importance of APC glycosylation in controlling the efficacy of PAR1 proteolysis by APC and demonstrates the potential of novel APC variants with superior cytoprotective signaling function as enhanced therapeutic agents for the treatment of ischemic stroke. (Blood. 2015;126(7):915-919)
Diabetes is an important risk factor for ischemic stroke (IS). Tissue-type plasminogen activator (tPA) has been associated with less successful revascularization and poor functional outcome in diabetes. We assessed whether a new thrombolytic strategy based on MMP10 was more effective than tPA in a murine IS model of streptozotocin (STZ)-induced diabetes. Wild-type mice were administered a single dose of streptozotocin (STZ) (180 mg/kg) to develop STZ-induced diabetes mellitus. Two weeks later, IS was induced by thrombin injection into the middle cerebral artery and the effect of recombinant MMP10 (6.5 μg/kg), tPA (10 mg/kg) or tPA/MMP10 on brain damage and functional outcome were analysed. Motor activity was assessed using the open field test. Additionally, we studied plasminogen activator inhibitor-1 (PAI-1) and thrombin-antithrombin complex levels (TAT) by ELISA and oxidative stress and blood-brain barrier (BBB) integrity by immunohistochemistry and western blot. MMP10 treatment was more effective at reducing infarct size and neurodegeneration than tPA 24 h and 3 days after IS in diabetic mice. Locomotor activity was impaired by hyperglycemia and ischemic injury, but not by the thrombolytic treatments. Additionally, TAT, oxidative stress and BBB permeability were reduced by MMP10 treatment, whereas brain bleeding or PAI-1 expression did not differ between treatments. Thrombolytic treatment with MMP10 was more effective than tPA at reducing stroke and neurodegeneration in a diabetic murine model of IS, without increasing haemorrhage. Thus, we propose MMP10 as a potential candidate for the clinical treatment of IS in diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.