Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. B. carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome-scale 1.31 Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
RESUMENEl presente estudio tuvo como objetivo estudiar la variabilidad morfológica de gallinas criollas del sur de Ecuador. Se trabajó con 200 individuos adultos (31 machos y 169 hembras), que fueron caracterizados con la ayuda de 14 descriptores para caracterización morfométrica propuestos por la FAO. Dentro de las mediciones, se seleccionaron el peso corporal y el largo del tarso por tener directa relación con las características productivas de interés para el estudio. Se identificó la presencia de 10 biotipos de gallinas criollas con diferencias físicas visibles entre ellas. Mediante análisis estadístico multivariado se determinó que los 10 biotipos se agrupan en tres bloques en el caso de las hembras y en dos bloques en el caso de los machos. Palabras clave: características morfométricas, gallinas criollas, peso corporal, tarsos ABSTRACTThe present study aimed to study the morphological variability of indigenous chicken in the south of Ecuador. A total of 200 adult individuals (31 males and 169 females) were characterized with the support of 14 descriptors for morphometric characterization established by FAO. On these measurements, body weight and length of the tarsus were selected due to their direct relationship with the productive characteristics of interest to the study. Ten biotypes of indigenous chicken were identified having evident physical differences among them. By using a multivariate statistical analysis, the biotypes were grouped in three clusters for females and in two clusters for males.
Local chicken populations are a major source of food in the rural areas of South America. However, very little is known about their genetic composition and diversity. Here, we analyzed five populations from South America to investigate their maternal genetic origin and diversity, hoping to mitigate the lack of information on local chicken populations from this region. We also included three populations of chicken from the Iberian Peninsula and one from Easter Island, which are potential sources of the first chickens introduced in South America. The obtained sequencing data from South American chickens indicate the presence of four haplogroups (A, B, E and D) that can be further subdivided into nine sub-haplogroups. Of these, four (B1, D1a, E1a(b), E1b) were absent from local Iberian Peninsula chickens and one (D1a) was present only on Easter Island. The presence of the sub-haplogroups A1a(b) and E1a(b) in South America, previously only observed in Eastern Asia, and the significant population differentiation between Iberian Peninsula and South American populations, suggest a second maternal source of the extant genetic pool in South American chickens.
The Sultanate of Oman has a complex mosaic of livestock species and production systems, but the genetic diversity, demographic history or origins of these Omani animals has not been expensively studied. Goats might constitute one of the most abundant and important domestic livestock species since the Neolithic transition. Here, we examined the genetic diversity, origin, population structure and demographic history of Omani goats. Specifically, we analyzed a 525-bp fragment of the first hypervariable region of the mitochondrial DNA (mtDNA) control region from 69 Omani individuals and compared this fragment with 17 mtDNA sequences from Somalia and Yemen as well as 18 wild goat species and 1,198 previously published goat sequences from neighboring countries. The studied goat breeds show substantial diversity. The haplotype and nucleotide diversities of Omani goats were found equal to 0.983 ± 0.006 and 0.0284 ± 0.014, respectively. The phylogenetic analyses allowed us to classify Omani goats into three mtDNA haplogroups (A, B and G): haplogroup A was found to be predominant and widely distributed and accounted for 80% of all samples, and haplogroups B and G exhibited low frequencies. Phylogenetic comparisons with wild goats revealed that five of the native Omani goat populations originate from Capra aegagrus. Furthermore, most comparisons of pairwise population FST values within and between these five Omani goat breeds as well as between Omani goats and nine populations from nearby countries were not significant. These results suggest strong gene flow among goat populations caused by the extensive transport of goats and the frequent movements of human populations in ancient Arabia. The findings improve our understanding of the migration routes of modern goats from their region of domestication into southeastern Arabia and thereby shed light on human migratory and commercial networks during historical times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.