The objective of the present study was to determine the relationship between serum uric acid (SUA) level and the presence of nonalcoholic fatty liver disease (NAFLD). We analyzed data of 9,019 Koreans who visited a health check up center. The SUA levels of all of these subjects were within the normal range. The participants were divided into 4 groups according to the quartiles of the SUA levels for both sexes. Hepatic steatosis was diagnosed on the basis of ultrasonographic findings. Multivariate logistic regression modeling was performed across the SUA quartiles. The presence of NAFLD and metabolic abnormalities were found significantly in subjects with high-normal SUA levels. After adjustment for age, metabolic components, and the liver-function test, the adjusted odds ratio (OR, 95% CIs) for the presence of NAFLD in the subjects with the highest SUA level was 1.46 (1.17-1.82) for men and 2.13 (1.42-3.18) for women, as compared to the subjects with the lowest SUA level. Our results suggest that increased SUA concentrations, even within the normal range, are independently associated with the presence of NAFLD.
Achiral
building blocks forming achiral structures is a common
occurrence in nature, while chirality emerging spontaneously from
an achiral system is usually associated with important scientific
phenomena. We report on the spontaneous chiral symmetry-breaking phenomena
upon the topographic confinement of achiral lyotropic chromonic liquid
crystals in periodically arranged micrometer scale air pillars. The
anisotropic fluid arranges into chiral domains that depend on the
arrangement and spacing of the pillars. We characterize the resulting
domains by polarized optical microscopy, support their reconstruction
by numerical calculations, and extend the findings with experiments,
which include chiral dopants. Well-controlled and addressed chiral
structures will be useful in potential applications like programmable
scaffolds for living liquid crystals and as sensors for detecting
chirality at the molecular level.
A simple, fast, and cost-effective technique to obtain highly oriented thermotropic and lyotropic liquid crystal (LC) phases using a simple nanoscratching method is presented. Highly aligned linear nanogrooves are fabricated by scratching substrates such as normal, indium tin oxide (ITO), curved glasses, and ITO-coated polyethylene terephthalate (PET) film using diamond lapping films. To demonstrate the feasibility of the platform, typical thermotropic and lyotropic LC materials in the nematic phase are used to demonstrate the well-aligned domains along with the resulting scratched nanogrooves. The polarised optical microscopy (POM) images show excellent dark and bright states depending on the sample rotation, proving that the LC molecules are well aligned. The electro-optical performance of the twisted nematic (TN) mode LC display fabricated using the nanogrooves is also measured and indicates reliable results compared with that of the conventional device. Indeed, scratch-induced nanogrooves are well generated on the curved substrate and ITO-coated PET film to show versatility of our technique. Our platform can suggest a new nanofabrication way to make various electro-optical devices as well as other patterning applications.
We control the shape and arrangement of various kinds of liquid crystal (LC) defects in nematic (N) and smectic A (SmA) phases using an in-plane electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.