The use of cancer-derived exosomes has been studied in several cancer types, but the cancer-targeting efficacy of glioma-derived exosomes has not been investigated in depth for malignant glioblastoma (GBM) cells. In this study, exosomes were derived from U87MG human glioblastoma cells, and selumetinib, a new anticancer drug, was loaded into the exosomes. We observed the tropism of GBM-derived exosomes in vitro and in vivo. We found that the tropism of GBM-derived exosomes is in contrast to the behavior of non-exosome-enveloped drugs and non-GBM-specific exosomes in vitro and in vivo in an animal GBM model. We found that the tropism exhibited by GBM-derived exosomes can be utilized to shuttle selumetinib, with no specific targeting moiety, to GBM tumor sites. Therefore, our findings indicated that GBM-derived exosomes loaded with selumetinib had a specific antitumor effect on U87MG cells and were non-toxic to normal brain cells. These exosomes offer improved therapeutic prospects for glioblastoma therapy.
We describe the synthesis, characterization, molecular modeling, and in vitro anticancer activity of three benzothiazole aniline (BTA) ligands and their corresponding platinum (II) complexes. We designed the compounds based on the selective antitumor properties of BTA, along with three types of metallic centers, aiming to take advantage of the distinctive and synergistic activity of the complexes to develop anticancer agents. The compounds were characterized using nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, mass spectrometry, elemental analysis, and tested for antiproliferative activity against multiple normal and cancerous cell lines. L1, L2, and L1Pt had better cytotoxicity in the liver, breast, lung, prostate, kidney, and brain cells than clinically used cisplatin. Especially, L1 and L1Pt demonstrated selective inhibitory activities against liver cancer cells. Therefore, these compounds can be a promising alternative to the present chemotherapy drugs.
Magnetic resonance imaging (MRI) is increasingly used to diagnose focal and diffuse liver disorders. Despite their enhanced efficacy, liver-targeted gadolinium-based contrast agents (GBCAs) raise safety concerns owing to the release of toxic Gd3+ ions. A π-conjugated macrocyclic chelate, Mn-NOTA-NP, was designed and synthesized as a non-gadolinium alternative for liver-specific MRI. Mn-NOTA-NP exhibits an r1 relaxivity of 3.57 mM−1 s−1 in water and 9.01 mM−1 s−1 in saline containing human serum albumin at 3 T, which is significantly greater than the clinically utilized Mn2+-based hepatobiliary drug, Mn-DPDP (1.50 mM−1 s−1), and comparable with that of GBCAs. Furthermore, the in vivo biodistribution and MRI enhancement patterns of Mn-NOTA-NP were similar to those of the Gd3+-based hepatobiliary agent, Gd-DTPA-EOB. Additionally, a 0.05 mmol/kg dose of Mn-NOTA-NP facilitated high-sensitivity tumor detection with tumor signal enhancement in a liver tumor model. Ligand-docking simulations further indicated that Mn-NOTA-NP differed from other hepatobiliary agents in their interactions with several transporter systems. Collectively, we demonstrated that Mn-NOTA-NP could be a new liver-specific MRI contrast agent.
Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals to achieve selective and synergistic cytotoxicity. The compounds obtained were characterized by NMR spectroscopy, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The compounds L, MnL, FeL, CoL, and ZnL showed promising in vitro cytotoxicity against cancer cells, and they had a lower IC50 than that of the clinically used cisplatin. In particular, MnL had synergistic cytotoxicity against liver, breast, and colon cancer cells. Moreover, MnL, CoL, and CuL promoted the production of reactive oxygen species in HepG2 tumor cell lines. The lead compound of this series, MnL, remained stable in physiological settings, and docking results showed that it interacted rationally with the minor groove of DNA. Therefore, MnL may serve as a viable alternative to platinum-based chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.