The paratracheal air cysts were mostly located at the right side of the trachea and at the thoracic inlet level. One-third had communication with the trachea. Paratracheal air cysts are not associated with respiratory symptoms or obstructive lung disease clinically or radiologically.
Although MASTL (microtubule-associated serine/threonine kinase-like) is an attractive target for anticancer treatment, MASTL inhibitors with antitumor activity have not yet been reported. In this study, we have presented a novel MASTL inhibitor, MKI-1, identified through in silico screening and in vitro analysis. Our data revealed that MKI-1 exerted antitumor and radiosensitizer activities in in vitro and in vivo models of breast cancer. The mechanism of action of MKI-1 occurred through an increase in PP2A activity, which subsequently decreased the c-Myc protein content in breast cancer cells. Moreover, the activity of MKI-1 in the regulation of MASTL-PP2A was validated in a mouse oocyte model. Our results have demonstrated a new small-molecule inhibitor of MASTL, MKI-1, which exerts antitumor and radiosensitizer activities through PP2A activation in breast cancer in vitro and in vivo.
The t(3;9)(q11-q12;q22) translocation associated with human extraskeletal myxoid chondrosarcomas results in a chimeric molecule in which the N-terminal domain (NTD) of the TFG (TRK-fused gene) is fused to the TEC (Translocated in Extraskeletal Chondrosarcoma) gene. Little is known about the biological function of TFG-TEC. Because the NTDs of TFG-TEC and TEC are structurally different, and the TFG itself is a cytoplasmic protein, the functional consequences of this fusion in extraskeletal myxoid chondrosarcomas were examined. The results showed that the chimeric gene encoded a nuclear protein that bound DNA with the same sequence specificity as the parental TEC protein. Comparison of the transactivation properties of TFG-TEC and TEC indicated that the former has higher transactivation activity for a known target reporter containing TEC-binding sites. Additional reporter assays for TFG (NTD) showed that the TGF (NTD) of TFG-TEC induced a 12-fold increase in the activation of luciferase from a reporter plasmid containing GAL4 binding sites when fused to the DNA-binding domain of GAL4, indicating that the TFG (NTD) of the TFG-TEC protein has intrinsic transcriptional activation properties. Finally, deletion analysis of the functional domains of TFG (NTD) indicated that the PB1 (Phox and Bem1p) and SPYGQ-rich region of TFG (NTD) were capable of activating transcription and that full integrity of TFG (NTD) was necessary for full transactivation. These results suggest that the oncogenic effect of the t(3;9) translocation may be due to the TFG-TEC chimeric protein and that fusion of the TFG (NTD) to the TEC protein produces a gain-of-function chimeric product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.