We investigated effects of molecular hydrogen (H2) supplementation on acid-base status, pulmonary gas exchange responses, and local muscle oxygenation during incremental exercise. Eighteen healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg/day, containing 2.544 µg/day of H2) or H2-depleted placebo (1500 mg/day) for three consecutive days. They performed cycling incremental exercise starting at 20-watt work rate, increasing by 20 watts/2 min until exhaustion. Breath-by-breath pulmonary ventilation (V˙E) and CO2 output (V˙CO2) were measured and muscle deoxygenation (deoxy[Hb + Mb]) was determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF). Blood gases’ pH, lactate, and bicarbonate (HCO3−) concentrations were measured at rest and 120-, 200-, and 240-watt work rates. At rest, the HCP group had significantly lower V˙E, V˙CO2, and higher HCO3−, partial pressures of CO2 (PCO2) versus placebo. During exercise, a significant pH decrease and greater HCO3− continued until 240-watt workload in HCP. The V˙E was significantly lower in HCP versus placebo, but HCP did not affect the gas exchange status of V˙CO2 or oxygen uptake (V˙O2). HCP increased absolute values of deoxy[Hb + Mb] at the RF but not VL. Thus, HCP-induced hypoventilation would lead to lower pH and secondarily impaired balance between O2 delivery and utilization in the local RF during exercise, suggesting that HCP supplementation, which increases the at-rest antioxidant potential, affects the lower ventilation and pH status during incremental exercise. HPC induced a significantly lower O2 delivery/utilization ratio in the RF but not the VL, which may be because these regions possess inherently different vascular/metabolic control properties, perhaps related to fiber-type composition.
This research examined the effects of single-dose molecular hydrogen (H2) supplements on acid-base status and local muscle deoxygenation during rest, high-intensity intermittent training (HIIT) performance, and recovery. Ten healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg, containing 2.544 μg of H2) or H2-depleted placebo (1500 mg) supplements 1 h pre-exercise. They performed six bouts of 7 s all-out pedaling (HIIT) at 7.5% of body weight separated by 40 s pedaling intervals, followed by a recovery period. Blood gases’ pH, PCO2, and HCO3− concentrations were measured at rest. Muscle deoxygenation (deoxy[Hb + Mb]) and tissue O2 saturation (StO2) were determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF) muscles from rest to recovery. At rest, the HCP group had significantly higher PCO2 and HCO3− concentrations and a slight tendency toward acidosis. During exercise, the first HIIT bout’s peak power was significantly higher in HCP (839 ± 112 W) vs. Placebo (816 ± 108 W, p = 0.001), and HCP had a notable effect on significantly increased deoxy[Hb + Mb] concentration during HIIT exercise, despite no differences in heart rate response. The HCP group showed significantly greater O2 extraction in VL and microvascular (Hb) volume in RF during HIIT exercise. The HIIT exercise provided significantly improved blood flow and muscle reoxygenation rates in both the RF and VL during passive recovery compared to rest in all groups. The HCP supplement might exert ergogenic effects on high-intensity exercise and prove advantageous for improving anaerobic HIIT exercise performance.
High-intensity exercise in athletes results in mainly the production of excess reactive oxygen species (ROS) in skeletal muscle, and thus athletes should maintain greater ROS scavenging activity in the body. We investigated the changes in six different ROS-scavenging activities in athletes following high-intensity anaerobic exercise. A 30-sec Wingate exercise test as a form of high-intensity anaerobic exercise was completed by 10 male university track and field team members. Blood samples were collected before and after the exercise, and the ROS-scavenging activities (OH•, O2•−, 1O2, RO• and ROO•, and CH3•) were evaluated by the electron spin resonance (ESR) spin-trapping method. The anaerobic exercise significantly increased RO• and ROO• scavenging activities, and the total area of the radar chart in the ROS-scavenging activities increased 178% from that in pre-exercise. A significant correlation between the mean power of the anaerobic exercise and the 1O2 scavenging activity was revealed (r = 0.72, p < 0.05). The increase ratio in OH• scavenging activity after high-intensity exercise was significantly greater in the higher mean-power group compared to the lower mean-power group (n = 5, each). These results suggest that (i) the scavenging activities of some ROS are increased immediately after high-intensity anaerobic exercise, and (ii) an individual’s OH• scavenging activity responsiveness may be related to his anaerobic exercise performance. In addition, greater pre-exercise 1O2 scavenging activity might lead to the generation of higher mean power in high-intensity anaerobic exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.