Auditory brainstem implants (ABIs) provide sound awareness to deaf individuals who are not candidates for the cochlear implant. The ABI electrode array rests on the surface of the cochlear nucleus (CN) in the brainstem and delivers multichannel electrical stimulation. The complex anatomy and physiology of the CN, together with poor spatial selectivity of electrical stimulation and inherent stiffness of contemporary multichannel arrays, leads to only modest auditory outcomes among ABI users. Here, we hypothesized that a soft ABI could enhance biomechanical compatibility with the curved CN surface. We developed implantable ABIs that are compatible with surgical handling, conform to the curvature of the CN after placement, and deliver efficient electrical stimulation. The soft ABI array design relies on precise microstructuring of plastic-metal-plastic multilayers to enable mechanical compliance, patterning, and electrical function. We fabricated soft ABIs to the scale of mouse and human CN and validated them in vitro. Experiments in mice demonstrated that these implants reliably evoked auditory neural activity over 1 month in vivo. Evaluation in human cadaveric models confirmed compatibility after insertion using an endoscopic-assisted craniotomy surgery, ease of array positioning, and robustness and reliability of the soft electrodes. This neurotechnology offers an opportunity to treat deafness in patients who are not candidates for the cochlear implant, and the design and manufacturing principles are broadly applicable to implantable soft bioelectronics throughout the central and peripheral nervous system.
Objective: Round window (RW) occlusion or reinforcement is a less-invasive option compared with direct repair approaches to improve symptoms of superior canal dehiscence (SCD) syndrome. However, RW surgery is associated with variable outcomes. Middle fossa craniotomy or transmastoid repair is an option for SCD patients who fail RW surgery, but it is unknown whether sequential repair following RW plugging improves SCD symptoms or increases complications. The objective of this study is to evaluate outcomes of SCD repair via middle fossa craniotomy following failed RW surgery. Study Design: Retrospective review. Setting: Academic tertiary care center. Patients: Adult patients with SCD syndrome who underwent failed RW surgery followed by sequential middle fossa craniotomy and plugging of the arcuate eminence defect. Patients with SCD associated with the superior petrosal sinus were excluded. Intervention: None. Main Outcome Measure: Prospectively collected pre- and postoperative symptom questionnaires, threshold audiograms, and cervical vestibular evoked myogenic potentials (cVEMP). Results: Seven SCD patients (out of a total of 194 surgical cases at our institution) underwent sequential middle-fossa SCD repair following failed RW surgery. Resolution of symptoms and reversal of diagnostic indicators were observed in the majority of subjects following sequential repair. Two of seven patients underwent a third procedure with plugging of the superior semicircular canal by a transmastoid approach due to the presence of residual symptoms. Conclusion: Middle fossa craniotomy and SCD occlusion is a safe and reasonable option for patients who fail RW surgery. Our cohort did not show increased risks of auditory or vestibular dysfunction.
OBJECTIVE: The cochlear nucleus (CN) is the target of the auditory brainstem implant (ABI). Most ABI candidates have Neurofibromatosis Type 2 (NF2) and distorted brainstem anatomy from bilateral vestibular schwannomas. The CN is difficult to characterize as routine structural MRI does not resolve detailed anatomy. We hypothesize that diffusion tensor imaging (DTI) enables both in vivo localization and quantitative measurements of CN morphology. STUDY DESIGN: We analyzed 7 Tesla (T) DTI images of 100 subjects (200 CN) and relevant anatomic structures using an MRI brainstem atlas with submillimetric (50 m) resolution. SETTING: Tertiary referral center. PATIENTS: Young healthy normal hearing adults. INTERVENTION: Diagnostic. MAIN OUTCOME MEASURES: Diffusion scalar measures such as fractional anisotropy (FA), mean diffusivity (MD), mode of anisotropy (Mode), principal eigenvectors of the CN, and the adjacent inferior cerebellar peduncle (ICP). RESULTS: The CN had a lamellar structure and ventral-dorsal fiber orientation and could be localized lateral to the inferior cerebellar peduncle (ICP). This fiber orientation was orthogonal to tracts of the adjacent ICP where the fibers run mainly caudal-rostrally. The CN had lower FA compared to the medial aspect of the ICP (0.44 ± 0.09 vs. 0.64 ± 0.08, p < 0.001). CONCLUSIONS: 7T DTI enables characterization of human CN morphology and neuronal substructure. An ABI array insertion vector directed more caudally would better correspond to the main fiber axis of CN. State-of-the-art DTI has implications for ABI preoperative planning and future image guidance-assisted placement of the electrode array.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.