Recently, there has been a flurry of research on the use of Reconfigurable Intelligent Surfaces (RIS) in wireless networks to create dynamic radio environments. In this paper, we investigate the use of an RIS panel to improve bi-directional communications. Assuming that the RIS will be located on the facade of a building, we propose to connect it to a solar panel that harvests energy to be used to power the RIS panel's smart controller and reflecting elements. Therefore, we present a novel framework to optimally decide the transmit power of each user and the number of elements that will be used to reflect the signal of any two communicating pair in the system (user-user or base station-user). An optimization problem is formulated to jointly minimize a scalarized function of the energy of the communicating pair and the RIS panel and to find the optimal number of reflecting elements used by each user. Although the formulated problem is a mixed-integer nonlinear problem, the optimal solution is found by linearizing the non-linear constraints. Besides, a more efficient close to the optimal solution is found using Bender decomposition. Simulation results show that the proposed model is capable of delivering the minimum rate of each user even if line-of-sight communication is not achievable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.