Oral tolerance was generated to hen egg white lysozyme in the mouse or to guinea pig myelin basic protein in the rat by a low-dose (1 mg) or a high-dose (5-20 mg) feeding regimen.
Oral tolerance is a long recognized method to induce peripheral immune tolerance. The primary mechanisms by which orally administered antigen induces tolerance are via the generation of active suppression or clonal anergy. Low doses of orally administered antigen favor active suppression whereas higher doses favor clonal anergy. The regulatory cells that mediate active suppression act via the secretion of suppressive cytokines such as TGF beta and IL-4 after being triggered by the oral tolerogen. Furthermore, antigen that stimulates the gut-associated lymphoid tissue preferentially generates a Th2 type response. Because the regulatory cells generated following oral tolerization are triggered in an antigen-specific fashion but suppress in an antigen nonspecific fashion, they mediate "bystander suppression" when they encounter the fed autoantigen at the target organ. Thus it may not be necessary to identify the target autoantigen to suppress an organ-specific autoimmune disease via oral tolerance; it is necessary only to administer orally a protein capable of inducing regulatory cells that secrete suppressive cytokines. Orally administered autoantigens suppress several experimental autoimmune models in a disease- and antigen-specific fashion; the diseases include experimental autoimmune encephalomyelitis (EAE), uveitis, and myasthenia, collagen- and adjuvant-induced arthritis, and diabetes in the NOD mouse. In addition, orally administered alloantigen suppresses alloreactivity and prolongs graft survival. Initial clinical trials of oral tolerance in multiple sclerosis, rheumatoid arthritis, and uveitis have demonstrated positive clinical effects with no apparent toxicity and decreases in T cell autoreactivity.
The present study investigated bystander suppression, specific suppression and anergy as mechanisms for oral tolerance. Oral tolerance was induced in mice by a single gastric intubation of 20 mg ovalbumin (OVA) and was evaluated in vitro by the absence of T lymphocyte proliferative responses to OVA after priming by OVA-complete Freund's adjuvant (CFA). T lymphocyte unresponsiveness was antigen specific, systemic and was not affected by the vehicle used for immunization. T lymphocytes derived from tolerant popliteal lymph nodes (PLN) responded to an acetone precipitate (AP) of mycobacteria present in CFA; this response was not suppressed by co-culture with OVA, thereby arguing against a mechanism of bystander suppression in our system. Responses of PLN T lymphocytes derived from OVA-CFA primed, non-tolerant mice, or those of an OVA-specific T lymphocyte line, were not suppressed by PLN or spleen cells derived from OVA tolerant mice. These results excluded the possibility that oral tolerance was induced and maintained by a mechanism of specific suppression. At the cellular level, we found that OVA-tolerant T lymphocytes did not produce interleukin-2 (IL-2) nor express IL-2 receptor in response to OVA stimulation in vitro; both observations are indicative of a state of anergy. Incubation of OVA-tolerant PLN T lymphocytes together with murine recombinant IL-2 for 5 days, released anergic T lymphocytes and a concomitant OVA-specific proliferative response of CD4+ T cells was detected. Taken together, our experimental system excludes the involvement of bystander or specific suppression in the induction of oral tolerance to OVA, and provides direct evidence to show that oral tolerance results from specific T lymphocyte anergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.