Human natural killer (NK) cells originate from CD34(+) hematopoietic progenitor cells, but the discrete stages of NK cell differentiation in vivo have not been elucidated. We identify and functionally characterize, from human lymph nodes and tonsils, four NK cell developmental intermediates spanning the continuum of differentiation from a CD34(+) NK cell progenitor to a functionally mature NK cell. Analyses of each intermediate stage for CD34, CD117, and CD94 cell surface expression, lineage differentiation potentials, capacity for cytokine production and natural cytotoxicity, and ETS-1, GATA-3, and T-BET expression provide evidence for a new model of human NK cell differentiation in secondary lymphoid tissues.
SUMMARY Natural killer (NK) cells provide protection against infectious pathogens and cancer. For decades it has been appreciated that two major NK cell subsets (CD56bright and CD56dim) exist in humans and have distinct anatomical localization patterns, phenotypes, and functions in immunity. In light of this traditional NK cell dichotomy, it is now clear that the spectrum of human NK cell diversity is much broader than originally appreciated as a result of variegated surface receptor, intracellular signaling molecule, and transcription factor expression; tissue-specific imprinting; and foreign antigen exposure. The recent discoveries of tissue-resident NK cell developmental intermediates, non-NK innate lymphoid cells, and the capacity for NK cells to adapt and differentiate into long-lived memory cells has added further complexity to this field. Here we review our current understanding of the breadth and generation of human NK cell diversity.
Our understanding of human natural killer (NK) cell development lags far behind that of human B- or T-cell development. Much of our recent knowledge of this incomplete picture comes from experimental animal models that have aided in identifying fundamental in vivo processes, including those controlling NK cell homeostasis, self-tolerance, and the generation of a diverse NK cell repertoire. However, it has been difficult to fully understand the mechanistic details of NK cell development in humans, primarily because the in vivo cellular intermediates and microenvironments of this developmental pathway have remained elusive. Although there is general consensus that NK cell development occurs primarily within the bone marrow (BM), recent data implicate secondary lymphoid tissues as principal sites of NK cell development in humans. The strongest evidence stems from the observation that the newly described stages of human NK cell development are naturally and selectively enriched within lymph nodes and tonsils compared with blood and BM. In the current review, we provide an overview of these recent findings and discuss these in the context of existing tenets in the field of lymphocyte development.
In humans, T cells differentiate in thymus and B cells develop in bone marrow (BM), but the natural killer (NK) precursor cell(s) and site(s) of NK development are unclear. The CD56bright NK subset predominates in lymph nodes (LN) and produces abundant cytokines compared to the cytolytic CD56dim NK cell that predominates in blood. Here, we identify a novel CD34dimCD45RA(+) hematopoietic precursor cell (HPC) that is integrin alpha4beta7bright. CD34dimCD45RA(+)beta7bright HPCs constitute <1% of BM CD34(+) HPCs and approximately 6% of blood CD34(+) HPCs, but >95% of LN CD34(+) HPCs. They reside in the parafollicular T cell regions of LN with CD56bright NK cells, and when stimulated by IL-15, IL-2, or activated LN T cells, they become CD56bright NK cells. The data identify a new NK precursor and support a model of human NK development in which BM-derived CD34dimCD45RA(+)beta7bright HPCs reside in LN where endogenous cytokines drive their differentiation to CD56bright NK cells in vivo.
The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.