Allicin (diallyl thiosulfinate) is the main biologically active component of the freshly crushed garlic extracts. In the present work the ability of allicin to cross through membranes (artificial and biological) was studied. Partition coefficients of allicin in water/octanol, water/hexadecane and water/phospholipids mixtures were determined. Using phospholipid vesicles loaded with hydrophilic thiols (reduced glutathione or 2-nitro-5-thiobenzoate), we observed that allicin freely permeates through phospholipid bilayers and interacts with the SH groups. The reaction rate of allicin with SH containing molecules after crossing the membrane was the same as in solution. Fast diffusion and permeation of allicin across human red blood cell membranes was also demonstrated. Allicin does not induce leakage, fusion or aggregation of membrane. The high permeability of allicin through membranes may greatly enhance the intracellular interaction with thiols.
The reaction between allicin (diallylthiosulfinate), the active component of garlic and reduced glutathione was investigated. The product of this reaction, mixed disulfide S-allylmercaptoglutathione (GSSA) was separated by high performance liquid chromatography and identified by 1H and (13)C nuclear magnetic resonance and mass spectroscopy. The reaction is fast (with an apparent bimolecular reaction rate constant of 3.0 M(-1) s(-1)). It is pH-dependent, which reveals a direct correlation to the actual concentration of mercaptide ion (GS(-)). Both GSSA and S-allylmercaptocysteine (prepared from allicin and cysteine) reacted with SH-containing enzymes, papain and alcohol dehydrogenase from Thermoanaerobium brockii yielding the corresponding S-allylmercapto proteins, and caused inactivation of the enzymes. The activity was restored with dithiothreitol or 2-mercaptoethanol. In addition, GSSA also exhibited high antioxidant properties. It showed significant inhibition of the reaction between OH radicals and the spin trap 5,5'-dimethyl-1-pyroline N-oxide in the Fenton system as well as in the UV photolysis of H2O2. In ex vivo experiments done with fetal brain slices under iron-induced oxidative stress, GSSA significantly lowered the production levels of lipid peroxides. The similar activity of GSSA and allicin as SH-modifiers and antioxidants suggests that the thioallyl moiety has a key role in the biological activity of allicin and its derivatives.
The diverse health benefit effects of garlic include its anticancer activity. However, very little is known about such activity of isolated garlic compounds, among which allicin (the major ingredient of crushed garlic) has been the least studied. The aim of this work was to determine whether pure allicin exhibits the antiproliferative effect reported for garlic in in vitro models. Allicin, but not its precursor alliin, inhibited proliferation of human mammary (MCF-7), endometrial (Ishikawa), and colon (HT-29) cancer cells (50% inhibitory concentration = 10-25 microM). Two of three tested primary lines of human fibroblasts displayed a similar response to allicin (50% inhibitory concentration = 16-40 microM), whereas the third line was almost unaffected by this compound. The pure allicin and water extract of garlic powder with equivalent allicin concentrations displayed a similar potency, suggesting that allicin is responsible for the antiproliferative effect of the extract. The growth inhibition was accompanied by accumulation of cells in the G0/G1 and G2/M phases of the cell cycle (MCF-7 cells) and not by a significant increase in cell death. Allicin caused a transient drop in the intracellular glutathione (GSH) level, the magnitude and kinetics of which significantly varied depending on cell type. The extent of the decrease in GSH levels correlated well (r = 0.75) with the growth inhibitory activity of allicin. On the basis of these findings, we suggest that allicin plays a major role in the antiproliferative effect of water-soluble garlic preparations and that this effect may be attributed to the ability of allicin to transiently deplete the intracellular GSH level.
IL-32, a recently discovered proinflammatory cytokine with four isoforms, induces IL-1, TNF-␣, IL-6, and chemokines. Here, we used ligand (IL-32␣) affinity chromatography in an attempt to isolate an IL-32␣ soluble receptor or binding protein. Recombinant IL-32␣ was covalently immobilized on agarose, and preparations of concentrated crude human urinary proteins were applied for chromatographic separation. A specific 30-kDa protein eluted from the column during acid washing and was identified by mass spectrometry as proteinase 3 (PR3) and confirmed by N-terminal microsequencing. PR3, a neutrophil granule serine protease, exists in a soluble or membrane form and is the major autoantigen for autoantibodies in the systemic vasculitic disease, Wegener's granulomatosis. The affinity of IL-32␣ to PR3 was determined by surface plasmon resonance. The dissociation constants were 2.65 ؎ 0.4 nM for urinary PR3 and 1.2 ؎ 0.05 nM for neutrophil-derived PR3. However, irreversible inactivation of PR3 enzymatic activity did not significantly change binding to the cytokine. Nevertheless, limited cleavage of IL-32 yielded products consistent with PR3 enzyme activity. Moreover, after limited cleavage by PR3, IL-32␣ was more active than intact IL-32␣ in inducing macrophage inflammatory protein-2 in mouse macrophages and IL-8 in human peripheral blood mononuclear cells. We suggest that PR3 is a specific IL-32␣ binding protein, independent of its enzymatic activity. However, limited cleavage of IL-32␣ by PR3 enhances activities of the cytokine. Therefore, specific inhibition of PR3 activity to process IL-32 or neutralization of IL-32 by inactive PR3 or its fragments may reduce the consequences of IL-32 in immune regulated diseases.autoimmune ͉ cytokine ͉ inflammation ͉ ligand affinity chromatography
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.