Our work aims to present an amazigh pronominal morphological analyzer (APMorph) based on xerox’s finite-state transducer (XFST). Our system revolves around a large lexicon named “APlex” including the affixed pronoun to the noun and to the verb and the characteristics relating to each lemma. A set of rules are added to define the inflectional behavior and morphosyntactic links of each entry as well as the relationship between the different lexical units. The implementation and the evaluation of our approach will be detailed within this article. The use of XFST remains a relevant choice in the sense that this platform allows both analysis and generation. The robustness of our system makes it able to be integrated in other applications of natural language processing (NLP) especially spellchecking, machine translation, and machine learning. This paper presents a continuation of our previous works on the automatic processing of Amazigh nouns and verbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.