In this paper we prove the existence, uniqueness, and continuous dependence upon the data of solution to integrodifferential parabolic equation with purely nonlocal integral conditions. The proofs are based on a priori estimates and Laplace transform method. Finally, we obtain a solution using a numerical technique which is called Stehfest algorithm by inverting the Laplace transform.
This paper is devoted to the solution of one-dimensional Fractional Partial Differential Equation (FPDE) with nonlocal integral conditions. These FPDEs have been of considerable interest in the recent literature because fractional-order derivatives and integrals enable the description of the memory and hereditary properties of different substances. Existence and uniqueness of the solution of this FPDE are demonstrated. As for the numerical approach, a Galerkin method based on least squares is considered. The numerical examples illustrate the fast convergence of this technique and show the efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.