The investigation on flow and heat transfer are important in the engineering applications, for example, extrusion of metal and polymer, cooling of electronic devices, heat exchanger and chemical processing equipment. Since the investigations on the real applications are costly and sometime hazardous, the study on mathematical model representing the fluid flow and heat transfer’s problem are considered to overcome this limitation. This paper will present the progress on the development of mathematical model on non-Newtonian two-phase model where the fluid flow is studied together with the dust particles. The review will include the discussions on existing problems, its methodology as well as the significance outcomes. The main contributions on this paper is to present the research gap and the possible development for future investigations on the problem under the mathematical model of fluid flow and heat transfer.
Non-Newtonian is a type of fluid that does not comply with the viscosity under the Law of Newton and is being widely used in industrial applications. These include those related to chemical industries, cosmetics manufacturing, pharmaceutical field, food processing, as well as oil and gas activities. The inability of the conventional equations of Navier-Stokes to accurately depict rheological behavior for certain fluids led to an emergence study for non-Newtonian fluids' models. In line with this, a mathematical model of forced convective flow on non-Newtonian Eyring Powell fluid under temperature-dependent viscosity (TDV) circumstance is formulated. The fluid model is embedded with the Newtonian heating (NH) boundary condition as a heating circumstance and is assumed to move over a stretching sheet acting vertically. Using appropriate similarity variables, the respective model was converted into ordinary differential equations (ODE), which was later solved utilizing the Keller box approach. The present model is validated by comparing the existing output in literature at certain special limiting cases, where the validation results display a firm agreement. The current outputs for the proposed model are shown in tabular and graphical form for variation of skin friction plus Nusselt number, velocity and temperature distribution, respectively.
The viscosity of a substance or material is intensely influenced by the temperature, especially in the field of lubricant engineering where the changeable temperature is well executed. In this paper, the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition. The flow was assumed to move over a vertical stretching sheet. The model of the problem, which is in partial differential equations, was first transformed to ordinary differential equations using appropriate transformations. This approach was considered to reduce the complexity of the equations. Then, the transformed equations were solved using the Keller box method under the finite difference scheme approach. The validation process of the results was performed, and it was found to be in an excellent agreement. The results on the present computation are shown in tabular form and also graphical illustration. The major finding was observed where the skin friction and Nusselt number were boosted in the strong viscosity.
In this work, the mixed convection flow of non-Newtonian Eyring–Powell fluid with the effects of temperature dependent viscosity (TDV) were studied together with the interaction of dust particles under the influence of Newtonian Heating (NH) boundary condition, which assume to move over a vertical stretching sheet. Alternatively, the dusty fluid model was categorized as a two-phase flow that consists of phases of fluid and dust. Through the use of similarity transformations, governing equations of fluid and dust phases are reduced into ordinary differential equations (ODE), then solved by efficient numerical Keller–box method. Numerical solution and asymptotic results for limiting cases will be presented to investigate how the flow develops at the leading edge and its end behaviour. Comparison with the published outputs in literature evidence verified the precision of the present results. Graphical diagrams presenting velocity and temperature profiles (fluid and dust) were conversed for different influential parameters. The effects of skin friction and heat transfer rate were also evaluated. The discovery indicates that the presence of the dust particles have an effect on the fluid motion, which led to a deceleration in the fluid transference. The present flow model can match to the single phase fluid cases if the fluid particle interaction parameter is ignored. The fluid velocity and temperature distributions are always higher than dust particles, besides, the opposite trend between both phases is noticed with β. Meanwhile, both phases share the similar trend in conjunction with the rest factors. Almost all of the temperature profiles are not showing a significant change, since the viscosity of fluid is high, which can be perceived in the figures. Furthermore, the present study extends some theoretical knowledge of two-phase flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.