A perfect Roman dominating function on a graph G is a function f : V G ⟶ 0,1,2 for which every vertex v with f v = 0 is adjacent to exactly one neighbor u with f u = 2 . The weight of f is the sum of the weights of the vertices. The perfect Roman domination number of a graph G , denoted by γ R p G , is the minimum weight of a perfect Roman dominating function on G . In this paper, we prove that if G is the Cartesian product of a path P r and a path P s , a path P r and a cycle C s , or a cycle C r and a cycle C s , where r , s > 5 , then γ R p G ≤ 2 / 3 G .
<abstract><p>A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.