Background Human and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products (PPCPs) disposed of in wastewater. Results SiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and nitrogen adsorption–desorption isotherm. The pseudo-second-order model provided the best correlation due to the big match between the experimental and theoretical of different adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed a better match with the Freundlich model with a capacity of removal reached up to 420 mg g−1. The removal capacity was dependent on pH and increased by increasing pH. The removal percentage reached 91;5% at pH = 8. The adsorbent demonstrated a high percentage removal of TMP, reaching more than 94% when increased pH. The sample was simply regenerated by soaking it for a few minutes in 1 N HCl and drying it. The sorbent was repeated five times with no discernible decrease in removal capacity. The thermodynamic study also showed endothermic, increasing randomness and not spontaneous. The free energy was 2.71 kJ/mol at 320 K. The findings of the DFT B3LYP/6–31 + g (d, p) local reactivity descriptors revealed that nitrogen atoms and π-electrons of the benzene and pyrimidine rings in the TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process. Conclusion The global reactivity indices prove that TMP is stable and it can be removed from wastewater using SiNP surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the nitrogen atoms and the π-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maximum charge transfer number (ΔN) proves that TMP has a great tendency to donate electrons to SiNP surface during the process of adsorption.
BackgroundHuman and veterinary antibiotics are typically discharged as parent chemicals in urine or feces and are known to be released into the environment via wastewater treatment plants (WWTPs). Several research investigations have recently been conducted on the removal and bioremediation of pharmaceutical and personal care products (PPCPs) disposed in wastewater. ResultsSiNP-Cu, a chelating matrix, was produced by delaying and slowing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel from functionalized with 3-aminopropyltrimethoxysilane. The prepared sorbent material was characterized using several techniques including BET surface area, FT-IR spectroscopy, Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), and nitrogen adsorption-desorption isotherm. The pseudo-second-order model provided the best correlation due to the big match between the experimental and theoretical of different adsorption coefficients. The Langmuir and Freundlich adsorption models were used and the study showed better match with Fruendlich model. The removal capacity was depending on pH and increased by increasing pH The adsorbent demonstrated a high percentage removal of TMP, reaching more than 94 %. The sample was simply regenerated by soaking it for a few minutes in 1N HCl and drying it. The sorbent was repeated five times with no discernible decrease in removal capacity. Thermodynamic study also showed endothermic, increasing randomness and not spontaneous in nature. The findings of the DFT B3LYP/6-31+g (d,p) local reactivity descriptors revealed that nitrogen atoms and p-electrons of the benzene and pyrimidine rings in the TMP are responsible for the adsorption process with the SiNP surface. The negative values of the adsorption energies obtained by molecular dynamic simulation indicated the spontaneity of the adsorption process. ConclusionThe global reactivity indics prove that TMP is stable and it can be removed from wastewater using SiNP surface. The results of the local reactivity indices concluded that the active centers for the adsorption process are the nitrogen atoms and the p-electrons of the pyrimidine and benzene rings. Furthermore, the positive value of the maximum charge transfer number (DN) proves that TMP has a great tendency to donate electrons to SiNP surface during the process of adsorption.
Candida is a genus of yeast .Many species of this genus are symbiont of animalshost including humans. While usually living as commensally in oral cavity, somecandida can cause disease .The most significant member of the genus is candidaalbicans which can cause infection called candidiasis or thrush especially in elderlydenture wearers.So the denture seems to be frequently the sources of fungal infection.The current study aimed to determine the fungal prevalence rate in oral cavityamong denture wearers patients in comparison to those without dentures and also todetermine the local risk factors includes trauma due to ill fitting denture, nocturnalwear of the denture, heavy smoking and the age of the denture.The result of this study showed that the prime etiology of candida growth was thematerial of prosthesis itself. 57% of the denture wearers showed growth of candidawhile 22% of subjects who had their own dentitions showed candida growth that theprosthesis is the dominant etiological factors in candida growth other local factorsmust be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.