In this study, the effect of deposition conditions and the temperature thermal treatment on the oxide parameters of two structures of silicon layers were investigated. The study present the evolution of boron profiles following a dry thermal oxidation in poly-Si/SiO2/c-Si films deposited at 520°C and 605°C temperatures and thermally oxidized in dry oxygen at respectively temperature 840°C, 945°C and 1050°C for tr=1h33’duration. The results show that the deposition conditions and the temperature treatment make a very important impact on the obtained films, which affect the redistribution and localization of dopants. It has been observed that the obtained value of the linear and the parabolic rate constant, the diffusion coefficient and the oxidation thickness are higher in the films deposited at Td = 520°C than those deposited at Td = 605°C. Also, the X-ray diffraction is strongly affected by the oxide thickness deposited between poly-silicon layers and crystalline substrates.
In this study, the effect of deposition conditions and the temperature thermal treatment on the oxide parameters of two structures of silicon layers were investigated. The study present the evolution of in situ boron profiles following a dry thermal oxidation in poly-Si/SiO2/c-Si films deposited at 520°C and 605°C temperatures and thermally oxidized in dry oxygen at respectively temperature 840°C, 945°C and 1050°C for duration tr=1h33’. The results show that the deposition conditions and the temperature treatment make a very important impact on the obtained films, which affect the redistribution and localization of dopants. It has been observed that the obtained value of the linear and the parabolic rate constant, the diffusion coefficient and the oxidation thickness are higher in the films deposited at Td = 520°C than those deposited at Td = 605°C. Also, the X-ray diffraction is strongly affected by the oxide thickness deposited between poly-silicon layers and crystalline substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.