Numerical study for the effect of an external magnetic field on the mixed convection of Al2O3–water Newtonian nanofluid in a right-angle vented trapezoidal cavity was performed using the finite volume method. The non-homogeneous Buongiorno model is applied for numerical description of the dynamic phenomena inside the cavity. The nanofluid, with low temperature and high concentration, enters the cavity through the upper open border, and is evacuated through opening placed at the right end of the bottom wall. The cavity is heated from the inclined wall, while the remainder walls are adiabatic and impermeable to both the base fluid and nanoparticles. After validation of the model, the analysis was carried out for a wide range of Hartmann number (0 ≼ Ha ≼ 100) and nanoparticles volume fraction (0 ≼ ϕ0 ≼ 0.06). The flow behavior as well as the temperature and nanoparticles distribution shows a particular sensitivity to the variations of both the Hartmann number and the nanofluid concentration. The domination of conduction mechanism at high Hartmann numbers reflects the significant effect of Brownian diffusion which tends to uniform the distribution of nanoparticles in the domain. The average Nusselt number which increases with the nanoparticles addition, depends strongly on the Hartmann number. Finally, a correlation predicting the average Nusselt number within such geometry as a function of the considered parameters is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.