An objective of satellite remote sensing is to predict or characterize the land cover change (LCC) over time. Sometimes we are capable of describing the changes of land cover with a probability distribution. However, we need sufficient knowledge about the natural variability of these changes, which is not always possible. In general, uncertainties can be subdivided into aleatory and epistemic. The main problem is that classical probability theory does not make a clear distinction between aleatory and epistemic uncertainties in the way they are represented, i.e., both of them are described with a probability distribution. The aim of this paper is to propagate the aleatory and epistemic uncertainty associated with both input parameters (features extracted from satellite image object) and model structure of LCC prediction process using belief function theory. This will help reducing in a significant way the uncertainty about future changes of land cover. In this study, the changes prediction of land cover in Cairo region, Egypt for next 16 years (2030) is anticipated using multi-temporal Landsat TM5 satellite images in 1987 and 2014. The LCC prediction model results indicated that 15% of the agriculture and 6.5% of the desert will be urbanized in 2030. We conclude that our method based on belief function theory has a potential to reduce uncertainty and improve the prediction accuracy and is applicable in LCC analysis.
This paper presents an approach for reducing uncertainty related to the process of land-cover change (LCC) prediction. LCC prediction models have, almost, two sources of uncertainty which are the uncertainty related to model parameters and the uncertainty related to model structure. These uncertainties have a big impact on decisions of the prediction model. To deal with these problems, the proposed approach is divided into three main steps: (1) an uncertainty propagation step based on possibility theory is used as a tool to evaluate the performance of the model; (2) a sensitivity analysis step based on Hartley-like measure is then used to find the most important sources of uncertainty; and (3) a knowledge base based on machine learning algorithm is built to identify the reduction factors of all uncertainty sources of parameters and to reshape their values to reduce in a significant way the uncertainty about future changes of land cover. In this study, the present and future growths of two case studies were anticipated using multi-temporal Spot-4 and Landsat satellite images. These data are used for the preparation of prediction map of year 2025. The results show that our approach based on possibility theory has a potential for reducing uncertainty in LCC prediction modeling.
B Ahlem Ferchichi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.