The success of Internet of Things (IoT) deployment has emerged important smart applications. These applications are running independently on different platforms, almost everywhere in the world. Internet of Medical Things (IoMT), also referred as the healthcare Internet of Things, is the most widely deployed application against COVID-19 and offering extensive healthcare services that are connected to the healthcare information technologies systems. Indeed, with the impact of the COVID-19 pandemic, a large number of interconnected devices designed to create smart networks. These networks monitor patients from remote locations as well as tracking medication orders. However, IoT may be jeopardized by attacks such as TCP SYN flooding and sinkhole attacks. In this paper, we address the issue of detecting Denial of Service attacks performed by TCP SYN flooding attacker nodes. For this purpose, we develop a new algorithm for Intrusion Detection System (IDS) to detect malicious activities in the Internet of Medical Things. The proposed scheme minimizes as possible the number of attacks to ensure data security, and preserve confidentiality of gathered data. In order to check the viability of our approach, we evaluate analytically and via simulations the performance of our proposed solution under different probability of attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.