The purpose of this paper is to design a controller that can control the position of the cylinder pneumatic stroke. This work proposes two control approaches, Proportional-Integral-Derivative Fuzzy Logic (Fuzzy-PID) controller and Proportional-Derivative Fuzzy Logic (PD-Fuzzy) controller for a Servo-Pneumatic Actuator. The design steps of each controller implemented on MATLAB/Simulink are presented. A model based on position system identification is used for the controller design. Then, the simulation results are analyzed and compared to illustrate the performance of the proposed controllers. Finally, the controllers are tested with the real plant in real-time experiment to validate the results obtained by simulation. Results show that PD-Fuzzy controller offer better control compared to Fuzzy-PID. A Pneumatic Actuated Ball & Beam System (PABBS) is proposed as the application of the position controller. The mathematical model of the system is developed and tested simulation using Feedback controller (outer loop)-PD-Fuzzy controller (inner loop). Simulation result is presented to see the effectiveness of the obtained model and controller. Results show that the servo-pneumatic actuator can control the position of the Ball & Beam system using PD-Fuzzy controller.
The aim of this paper is to present experimental, empirical and analytic identification techniques, known as non-parametric techniques. Poor dynamics and high nonlinearities are parts of the difficulties in the control of pneumatic actuator functions, which make the identification technique very challenging. Firstly, the step response experimental data is collected to obtain real-time force model of the intelligent pneumatic actuator (IPA). The IPA plant and Personal Computer (PC) communicate through Data Acquisition (DAQ) card over MATLAB software. The second method is approximating the process by curve reaction of a first-order plus delay process, and the third method uses the equivalent n order process with PTn model parameters. The obtained results have been compared with the previous study, achieved based on force system identification of IPA obtained by the (Auto-Regressive model with eXogenous) ARX model. The models developed using non-parameters identification techniques have good responses and their responses are close to the model identified using the ARX system identification model. The controller approved the success of the identification technique with good performance. This means the Non-Parametric techniques are strongly recommended, suitable, and feasible to use to analyze and design the force controller of IPA system. The techniques are thus very suitable to identify the real IPA plant and achieve widespread industrial acceptance.
Hierarchical clustering is an unsupervised technique, which is a common approach to study protein and gene expression data. In clustering, the patterns of expression of different genes are grouped into distinct clusters, in which the genes in the same cluster are assumed potential to be functionally related or to be influenced by a common upstream factor. Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, the uncertainty in the results obtained is still bothersome. Experimental repetitions are generally performed to overcome the drawbacks of biological variability and technical variability. In this study, the author proposes repeated measurement to evaluate the stability of gene clusters. This paper aims to prove that the stability from the gene clusters, incorporated with repeated measurement, can be used for further analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.