The hazards of handling antineoplastic drugs have been raised and discussed in several studies. Introduction of new antineoplastics together with abuse of safety standards have contributed to the exposure risk for personnel who handle these substances. Interactions of antineoplastic drugs with biological structures vary according to the drug(s) and the individual's genetic susceptibility. This study was carried out to evaluate the genome damage induced by exposure to antineoplastic drugs in nurses (n = 20) and pharmacists (n = 18) working in the Oncology Department of Tanta Cancer Center. Thirty subjects matched in age, gender and smoking habit were selected as controls. Both chromosomal aberration analysis and micronucleus assay were used to evaluate genome damage in peripheral blood lymphocytes of the study subjects. The numbers of aberrant lymphocytes, as well as chromosomal aberration and micronuclei frequencies, were significantly increased in exposed personnel in comparison to matched controls. Compared with pharmacists, nurses showed notably higher level of chromosome damage. On the other hand, no significant difference in micronuclei frequency was observed between nurses and pharmacists. Correlation analyses pointed to the influence of age and duration of occupational exposure on the level of chromosome damage among exposed subjects. The results of this study confirmed that handling antineoplastic drugs without appropriate precautions imposed a genotoxic risk for exposed healthcare workers. These results address the need for regular biomonitoring of exposed personnel. In addition, they call attention to the need for proper implementation of intervention measures aiming to eliminate or significantly reduce worker exposure and prevent untoward biological effects.
Induction of oxidative stress and inflammation are considered the primary mechanism of cadmium (Cd) toxicity. Nigella sativa (NS) seeds and their oil (NSO) have been reported to possess antioxidant and anti-inflammatory potential. This study was conducted to assess the protective effect of NSO on Cd-induced lung damage in rat. Forty adult male Wistar rats were divided equally into 4 groups. Animals in groups I, II, and III received 1 ml of isotonic saline intraperitoneally (IP), 2 mg/kg of cadmium chloride (CdCl) dissolved in isotonic saline IP, and 1 ml/kg of NSO by gastric gavage, respectively. Group IV rats received NSO an hour prior to CdCl administration via the same routes and doses as previously described. All animals were treated for 28 days. At the end of the study, animals were sacrificed; lungs were harvested for histopathological studies using light and electron microscopy. Saline-treated and NSO-treated rats showed normal lung parenchyma. However, CdCl-treated rats showed massive degenerative changes in alveolar epithelial lining, disrupted interalveolar septa, and hemolytic debris in alveoli. Rats treated with both NSO and CdCl (group IV) showed amelioration of most Cd-induced lung damage with minimal histopathological changes in lung architecture. This study elucidates the protective effects of NSO on Cd-induced lung injury in rats and highlights the possibility of using NSO as a protective agent in individuals at high risk of Cd-induced lung toxicity.
Organophosphorus poisoning is a major global health problem with hundreds of thousands of deaths each year. Research interest in N-acetylcysteine has grown among increasing evidence of the role of oxidative stress in organophosphorus poisoning. We aimed to assess the safety and efficacy of N-acetylcysteine as an adjuvant treatment in patients with acute organophosphorus poisoning. This was a randomized, controlled, parallel-group trial on 30 patients suffering from acute organophosphorus poisoning, who were admitted to the Poison Control Center of Tanta University Emergency Hospital, Tanta, Egypt, between April and September 2014. Interventions included oral N-acetylcysteine (600 mg three times daily for 3 days) as an added treatment to the conventional measures versus only the conventional treatment. Outcome measures included mortality, total dose of atropine administered, duration of hospitalization and the need for ICU admission and/or mechanical ventilation. A total of 46 patients were screened and 30 were randomized. No significant difference was found between both groups regarding demographic characteristics and the nature or severity of baseline clinical manifestations. No major adverse effects to N-acetylcysteine therapy were reported. Malondialdehyde significantly decreased and reduced glutathione significantly increased only in the NAC-treated patients. The patients on NAC therapy required less atropine doses than those who received only the conventional treatment; however, the length of hospital stay showed no significant difference between both groups. The study concluded that the use of N-acetylcysteine as an added treatment was apparently safe, and it reduced atropine requirements in patients with acute organophosphorus pesticide poisoning.Organophosphorus (OP) insecticides are among the most important pesticides, and poisoning induced by them represents a major global health problem with hundreds of thousands of deaths each year, mostly in developing countries [1].Organophosphorus pesticides inhibit esterase enzymes, especially acetylcholinesterase, which results in accumulation of acetylcholine at cholinergic synapses and overstimulation of cholinergic receptors of the autonomic nervous system, central nervous system (CNS) and neuromuscular junctions [2].Acute toxicity produces a range of clinical manifestations, known as the acute cholinergic crisis. Depending on the type of receptors and their location, the clinical features may include muscarinic (bronchospasm,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.