We present our performance analysis, algorithm designs, and the optimizations needed for the development of high-performance GPU-only algorithms, and in particular, for the dense Cholesky factorization. In contrast to currently promoted designs that solve parallelism challenges on multicore architectures by representing algorithms as Directed Acyclic Graphs (DAGs), where nodes are tasks of fine granularity and edges are the dependencies between the tasks, our designs explicitly target manycore architectures like GPUs and feature coarse granularity tasks (that can be hierarchically split into fine grain data-parallel subtasks). Furthermore, in contrast to hybrid algorithms that schedule difficult to parallelize tasks on CPUs, we develop highly-efficient code for entirely GPU execution. GPU-only codes remove the expensive CPU-to-GPU communications and the tuning challenges related to slow CPU and/or low CPU-to-GPU bandwidth. We show that on latest GPUs, like the P100, this becomes so important that the GPU-only code even outperforms the hybrid MAGMA algorithms when the CPU tasks and communications can not be entirely overlapped with GPU computations. We achieve up to 4, 300 GFlop/s in double precision on a P100 GPU, which is about 7-8× faster than high-end multicore CPUs, e.g., two 10-cores Intel Xeon E5-2650 v3 Haswell CPUs, where MKL runs up to about 500-600 Gflop/s. The new algorithm also outperforms significantly the GPU-only implementation currently available in the NVIDIA cuSOLVER library. CCS CONCEPTS •General and reference →Design; Performance; •Theory of computation →Algorithm design techniques; •Computing methodologies →Linear algebra algorithms; Optimization
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.